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Abstract- Many times, invasive cancer treatments are 

more painful than the disease. Even after treatment, the 

recovery rate and the survival of patients is another issue. 

The combinational therapy approach helped radiation 

oncologists for the effective and non-invasive treatment of 

cancer patients, where hyperthermia is used in 

combination with radiotherapy and or chemotherapy. 

Hyperthermia is the process of raising the temperature on 

the tumor site to more than 42 °C and healthy tissues at a 

safe limit for 20-60 minutes. Applicators for hyperthermia 

of breast tumors are heavy, bulky, and mainly operate at 

low frequency. In this article, a compact rectangular 

microstrip applicator for local hyperthermia of breast 

tumors is presented. The applicator is integrated with two 

different female breast models; a four-layer scattered fibro 

glandular breast model and a four-layer scattered fibro 

glandular breast model with water bolus (WB). The stage-

II tumor of various sizes (10, 15, 20, 25, 30 mm3) is 

inserted in both the breast models. The performance of the 

applicator is tested at various air gaps between the breast 

model and TSRMA. The SAR and temperature variations 

in healthy and tumor tissues are observed. The 

performance of the applicator is suitable and compatible 

with ISM band frequencies useful for breast 

hyperthermia.   

 

Keywords: Breast Tumor, Hyperthermia Treatment (HT), 

SAR, Temperature, TSRMA. 

 

1. INTRODUCTION                                                                         

Cancer is a deadly disease; day by day, improvements 

in the field of non-invasive treatment modalities have 

shown their benefits in the survival rate of patients after 

the treatment. A recent database from GLOBCON shows 

that the rate of breast cancer has surpassed lung cancer and 

has a mortality rate of 11.7% [1]. So that research in the 

prevention of breast cancer, detection at early stages, 

minimally invasive treatment, fast recovery after 

treatment, and better life or survival after treatment is on 

the highest priority. Available and preferred treatments for 

cancer are surgery, chemotherapy, and radiotherapy. 

Combinational therapy has become popular. 

Hyperthermia treatment helps to improve the effectiveness 

of chemotherapy (CT) and radiotherapy (RT). 

Hyperthermia is the process of raising the temperature on 

a tumor site more than 42 °C and healthy tissues at a safe 

limit for 20-60 minutes [2-4]. Due to such high-

temperature heating, the tumor shrinks and becomes more 

sensitive to radiotherapy and chemotherapy. Controlled 

heating of breast tumor without hotspots on healthy tissues 

is a difficult task in breast HT.  

In some cases, hotspots on healthy tissue occur due to 

overheating. Radiofrequency, microwaves, and ultrasound 

waves are used for HT. Low-frequency applicators (8 

MHz-915 MHz) have proven their efficiency in HT of 

tumors at the human body's abdomen, head, and neck 

locations [5]. Many experimental validations and clinical 

trials have efficiently proven that microwave frequencies 

are best suited for breast HT [6-8]. Breast cancer generally 

happens in the size of 10-20 mm2. In some cases, it is a 

recurrent type and develops superficially. These tumors 

can be treated with combinational therapy, HT and 

radiotherapy or chemotherapy.  

Basic investigations about the location of the tumor in 

the breast and the patient's fitness are carried out for the 

application of HT. Biopsy and other techniques are used to 

find the stage of the tumor. This database is required for 

proper focusing of microwave power on the tumor site. 

The duration of HT depends on the tumor size, the patient's 

physical fitness, and tumor location. Generally, 

microwaves are preferred for breast tumor applications. 

Applicators reported in [9-17] are efficiently suits for 

superficial and deeply located tumors. They are bulky and 

requires more time for HT, so compact and efficient 

applicators are in demand. Coupling water bolus (WB) 

pads carrying deionized water between the surroundings of 

treatment region (breast skin) and applicator improves the 

performance of HT, reduces reflection and reduces 

hotspots on healthy tissue [18-19].  The flexibility of the 

applicator in terms of power, amplitude, phase, and 

position is additional merit of the compact applicator.  
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Simple settings of these parameters make an applicator 

widely suitable and acceptable for HT. Such simple and 

compact applicator can reduce the number of hotspots on 

healthy tissue. The concept of microstrip antenna came up 

around 1953-54, but the application based significant 

research and development initiated in 1970 [20], the 

feasibility of microstrip antenna for clinical applications is 

investigated [21], then integrated design and use of 

microstrip antennas for clinical applications started [21-

23]. It is widely suitable for recent trends of ISM band 

applications [24].  

In the article, a simple, compact and cost-effective 

teeth-shaped rectangular microstrip applicator (TSRMA) 

is designed and fabricated on an FR4 substrate. Two 

hemispherical breast models with a simple and WB are 

designed with a medical mammary radius of 80 mm. In 

every breast model tumor of different size has been 

embedded in CST-MW suite; four-layers (Skin, Fat, 

Gland, and Muscle) are considered in the design. These 

breast models are united with TSRMA in a simulation 

environment. The performance of TSRMA is evaluated in 

terms of SAR and temperature variations during the HT.  

 

2. MATERIALS AND METHODS 

The design of the microstrip antenna, three-

dimensional breast models, and bio-heat equations are 

discussed in this section. 

 

2.1. Microstrip Antenna Design  

A simple rectangular microstrip antenna is designed in 

the CST-MW suite and fabricated on FR4 substrate. 

Design parameters of TSRMA are mentioned in Table 1. 

The designed TSRMA and fabricated TSRMA are shown 

in Figures 1 and 2.  

 
Table 1. Antenna design parameters 

 

Value Parameter 

1 Relative permeability (µr) 

4.4 Relative permittivity (ℇr) 

1.55 Thickness of substrate (mm) 

25 
Thickness of copper-clad 

(microns) 

0.025 Loss tangent (δ) 

 

    
 

                      (a) top view                               (b) bottom view 
 

Figure 1. Designed TSRMA 

 

     
 

                      (a) top view                                 (b) bottom view 
 

Figure 2. Fabricated TSRMA  

 

Figure 1(a) shows the patch layer and (b) shows the 

partial ground layer structure of the designed TSRMA. The 

fabricated structure is depicted in Figure 2(a), which shows 

the top layer and (b) shows the bottom layer. Dimensions 

of the antenna are designed and optimized using antenna 

design equations (1)-(5) taken from [25-28].  
1
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where, the effective dielectric constant and effective length 

of the patch is denoted by reff and Leff, Width of patch, 

height, and length is denoted by W, h, and L, C is velocity 

of light, fr is resonant frequency, Wf is feed width, t is 

thickness of the strip line, and Zo is output impedance. 

 

2.2. 3D Breast Model Design  

A four-layer scattered fibro glandular 3D female breast 

model of hemispherical shape, with a radius of 80 mm, is 

designed in the CST-MW suite depicted in Figure 3. The 

thermal and dielectric properties database is taken from the 

IT'IS foundation [29], and breast models based on [30] are 

used for realistic breast scenarios.  

A similar model is designed with WB for performance 

evaluation with TSRMA in the CST-MW suite depicted in 

Figure 4. A stage-II tumor of various sizes (10, 15, 20, 25, 

30 mm3) is embedded in both breast models. The spatial 

location of the tumor is (10, 10, 45). For coupled 

simulation, breast models are integrated with TSRMA, 30 

mm away from the apex point of 3D breast model. The 

breast model's thermal and dielectric characteristics are 

given in Table 2 [29], and tissue classification for the 

design of the breast model is shown in Table 3 [30]. 
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Figure 3. Four-layer breast model with TSRMA 

 
Table 2. Breast Model Design Parameters at 2.76 GHz [27] 

 

Tissue type 
Relative 

Permittivity 

(f/m) 

Electrical 

Conductivity 

(S/m) 

Thermal 

Conductivity 

(W/m/°C) 

Density 
(Kg/m3) 

Skin 37 1.62 0.37 1109 

Fat 5.09 0.160 0.21 911 

Gland 56.8 2.23 0.33 1041 

Muscle 52.4 1.96 0.49 1190 

Tumor 54.9 4 0.42 1058 

Water bolus 83 1.72 0.60 994 

 

 
 

 

Figure 4. Four-layer breast model with TSRMA 

 

Table 3. Breast Model Classification and Design Parameters [30] 
 

Tissue type Thickness of the tissue layer (mm) 

Skin 02 

Fat 14 

Gland 40 

Muscle 24 

Tumor 10/15/20/25/30 

Water bolus 05 

 

Both the breast models are used with TSRMA in 

simulation, the performance of the TSRMA for different 

breast models is analyzed. SAR in tumor and temperature 

variations for different HT durations is analyzed in the 

electromagnetic (EM) and thermal simulation 

environment.  

 

2.3. Hyperthermia and SAR 

Tissue temperature is governed by Pennes bio-heat 

equation (6) is taken from [31], and the amount of heat 

absorbed in the breast tissue is measured by SAR given by 

equation (7) and taken from [32]. 
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where, tissue characteristics are represented as  is density 

(kg/m3), C is specific heat (J/mK), P is power dissipation, 

k is thermal conductivity (W/mK), T is temperature (°C). 

Tb is blood temperature (°C), hb is convection heat transfer 

coefficient (Kg/m3),  is tissue conductivity (S/m), and Et 

is electric field (V/m).  

TSRMA is used to focus RF power (0.5 W) and 

uniform heating [30] on the tumor site in the simulation 

environment. In classical hyperthermia, the temperature on 

the tumor should be maintained between 42~45 °C 

(315.15~318.15 K) for damaging its protein structure. 

SAR and temperature variations in the breast tissue and 

tumor tissue were observed. We aim to focus MW power 

on tumor site [33], so according to the spatial location of 

the tumor, coordinates of the TSRMA are optimized for 

proper focusing on the tumor. Three coordinates - 

transformation of TSRMA concerning the top center of the 

breast model is performed as [(10, 5, 0)]. HT is applied for 

four cycles (0~20, 30, 40, 50 and 60 min).  

 

3. RESULTS AND DISCUSSION 

 

3.1. Simulated and Measured Antenna Parameters  

Simulated parameters are obtained from the CST-MW 

suite, and measurements are carried on KEYSIGHT 

FieldFox Microwave Vector Network Analyzer (N9928A) 

are given in Table 4.  

 
Table 4. TSRMA Parameters 

 

Applicator 
Resonant Frequency 

(f1) GHz 

Impedance Bandwidth 

& range (GHz) 
Return loss 

Simulated 
TSRMA 

2.68 
912 MHz 

(2.368 ~3.28) 
-22.95 dB 

Measured 
TSRMA 

2.76 
1.2 GHz 

(2.380 ~3.65) 
-25.6 dB 

 

A simulated and measured reflection coefficient plot of 

TSRMA for resonant frequency 2.76 GHz is illustrated in 

Figure 5, and VSWR is depicted in Figure 6. The lowest 

value of VSWR is (1.11). 

 

3.2. SAR Analysis 

Both the breast models are integrated with TSRMA for 

simulated SAR calculations. The SAR analysis is carried 

out for all tumor sizes. For the optimum performance 

evaluation, the distance between the TSRMA and breast 

model is varied. The performance is evaluated at an air gap 

of (d = 10, 20, 30 and 40 mm). SAR (1-g) profile summary 

of all tissues in HT for tumor T=15 mm3 and distance d=30 

mm is displayed in Figure 7. All healthy tissue is within 

the safe limit of exposure. Evaluated SAR for various 

tumors at different air gaps is mentioned in Table 5.  
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Figure 5. Variation in Reflection Coefficient v/s Frequency

 
Figure 6. Variation in VSWR v/s Frequency 

 

 
Figure 7. SAR profile for breast tissues (T=15 mm3, d=30 mm) 

 

The simulated SAR during the HT is observed in all 

tissues of the breast model. The performance of TSRMA 

is very good for tumor sizes of (10, 15 and 20 mm3). The 

simulated SAR summary for all tumors at different air gaps 

(d) is shown in Figure 8. The SAR value decreases with an 

increase in the air gap (d). The evaluation observed that 

SAR is more for tumor sizes of 10, 15 and 20 mm3. The 

performance of TSRMA for tumor sizes of 25 and 30 mm3  

is degraded. The patch size of TSRMA (18×24) limits its 

focus on the more extensive tumors. Increased patch size 

shall increase the size of the antenna. The required SAR 

value should not be less than 0.5 W/kg [34]. Such heating 

helps shrink the tumor, destroys its protein structure, and 

increases blood flow, making it highly responsive to 

chemotherapy and radiotherapy [2-5].  

The WB is used to circulate thermally regulated 

deionized water. Due to this, hotspots are reduced, but 

SAR is also reduced. It prevents damage to skin tissues but 

adversely affects applicator radiations.  

 
Table 5. SAR Analysis 

 

Tumor 

size 

(mm3) 

Air gap 
(d= mm) 

Breast model 

SAR  1-g 

(W/Kg) 

Breast model with 

WB SAR 1-g 

(W/Kg) 

10  

10 14.8 10.63 

20 11.07 7.97 

30 3.5 2.52 

40 2.46 1.77 

15 

10 14.01 9.87 

20 10.5 7.5 

30 3.32 2.37 

40 2.33 1.66 

20 

10 12.99 9.07 

20 9.74 6.8 

30 3.08 2.15 

40 2.166 1.51 

25 

10 4.34 2.9 

20 3.25 1.46 

30 1.03 0.79 

40 0.72 0.41 

30 

10 3.71 1.77 

20 2.78 1.32 

30 0.88 0.42 

40 0.61 0.28 
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Figure 8. SAR 1-g profile for various tumor sizes and air gap (d) in mm 

 

Negligible hotspots are observed on surrounding 

healthy tissue near the skin of the tumor. To enhance SAR 

and improve the performance of TSRMA with WB, a 

silicon layer can be used in the subsequent design and 

fabrication of the applicator [35]. 

 

3.3. Temperature Analysis 

Thermal analysis is an essential part of the HT. 

Depending on the location, stage, and characteristics of 

tumor tissue, an appropriate temperature range can be 

selected. We have selected the temperature range 315.15-

318.15 K, meaning 42-45 °C for the maximum treatment 

period of 0-60 min. A radiation oncologist can select the 

suitable duration of treatment, input power, and 

hyperthermia temperature range as necessary. The 

temperature analysis for the tumor (15 mm3) is depicted in 

Figure 9. The heating of tumor is faster in HT of simple 

breast model. The desired temperature of 42-45 °C has 

been achieved in the treatment period of 30-50 min. 

Temperature is constant after -50 min. Due to this uneven 

heating of tumors, and some hotspots are observed on 

healthy tissue. 

In comparison, it is slower in the HT of WB coupled 

model. The desired temperature of 42-45 °C has been 

achieved in 40-55 min. It is constant for up to 60 min. 

Uniform heating and reduction of hotspots are observed 

due to the coupling of the water bolus. The surrounding 

skin tissues are safe, and very few hotspots are observed 

on surrounding skin tissues of tumors. The water bolus 

coupling effectively controls hotspots and toxicity of 

breast HT [18-19]. Performance of TSRMA is compared 

with previously reported applicators of HT. It is described 

in Table 6. Their comparative parameters are taken from 

[9] and [10-17]. 

 

 
Figure 9. Temperature profile of Tumor (15 mm3) 
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The applicators reported in Table 6 [9], [10-17] are low 

and high-frequency applicators, and their size is more 

significant than TSRMA. The proposed compact 

applicator can be used at MW frequencies with a robotic 

arm to achieve HT's better flexibility and comfort. Its 

performance can be improved by advanced combinational 

design with a silver layer and WB [35]. The obtained SAR 

in 1-g more suitable for HT applications recommended by 

the IEEE standards. The TSRMA has an advantage of 

compact size, variable input power and negligible hotspots 

are observed in HT.  

 

4.  CONCLUSION 

In the article, we have simulated two breast models for 

different sizes of tumors. The first time we have proposed 

a compact applicator, and performance of the applicator 

was observed by integrating it with an entirely fat breast 

model and scattered fibro-glandular breast model.  

For a similar distance (d) of 30 mm between the breast 

model and TSRMA, a breast model with WB has better 

results than a simple one. It reduces hotspots on 

surrounding healthy (skin) tissues and toxicity to a large 

extent. Simulated SAR and thermal analysis state that this 

compact TSRMA could be the candidate for robotic arm-

based hyperthermia, where advanced temperature control 

and monitoring systems shall improve the complexity of 

HT. The heating of the tumor is uniform, and due to the 

compact size of TSRMA, it can be used in combination 

with WB. The TSRMA can be used for breast tumor 

treatment. Depending on the requirement, an appropriate 

SAR can be achieved by varying the distance between the 

breast model and TSRMA. For the higher performance of 

TSRMA, a silicon layer will be incorporated in the design 

of TSRMA. 
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Table 6. Comparison of TSRMA with previous work [9] and [10-17] 
 

Ref. Year Frequency Tissue type Return Loss (dB) Peak SAR (W/Kg) Size (mm2) 

[9] 2017 f1 = 434 MHz 3-layer -16 1.32 
124 × 124 

[9] 2017 f2 = 915 MHz 3-layer -17 1.44 

[10] 2014 f1 = 434 MHz Tissue -28 0.15 
35 × 50 

[10] 2014 f2 =850 MHz 3-layer -26 0.15 

[11] 2014 f1 = 434 MHz 3-layer -30 60 100 × 150 

[12] 2012 f1 =915 MHz 
3-layer 

Tissue 
-32 11.17 

120 × 120 
 [12] 2012 

 
f2 =2.45 GHz 

3-layer 

Tissue 
-27 27.93 

[13] 2009 f1 = 434 MHz 3-layer -20 1.32 130 × 130 

[14] 2008 f1 = 434 MHz 3-layer -19 20 78 × 78 

[15] 2007 f1 = 434 MHz Tissue -20.95 -- 100 ×100 

[16] 2019 f1 = 2.45 GHz Simple -16.5 -- 100 ×100 

[17] 2020 f1 = 2.45 GHz 
Body 

phantom 
20.95 3.69 170 × 250 

This Work f1 = 2.76 GHz 

4-layer skin, 

fat gland  

and muscle 

-25.6 

For T-10 mm3 
(d10)-14.8/10.63 

(d20)-11.07/7.97 

(d30)-3.5/2.52 
(d40)-2.46/1.77 

 

For T-15 mm3 
(d10)-14.01/9.87 

(d20)-10.5/7.5 

(d30)-3.32/2.37 
(d40)-2.33/1.66 

 

For T-20 mm3 
(d10)-12.99/9.07 

(d20)-9.74/6.8 

(d30)-3.08/2.15 

(d40)-2.16/1.51 

 

For T-25 mm3 
(d10)-4.34/2.9 

(d20)-3.25/1.46 

(d30)-1.03/0.79 
(d40)-0.72/0.41 

 

For T-30 mm3 
(d10)-3.71/1.77 

(d20)-2.78/1.32 

(d30)-0.88/0.42 
(d40)-0.61/0.28 

36 × 24 
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