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Abstract- In an era where the amounts of data generated 

by systems of different types have become gigantic, Big 

Data systems are trying to ensure proper management of 

this data by ensuring its security, accessibility, and 

optimization of its placement. This data explosion has over 

passed all traditional data storage infrastructures and 

solutions and has forced big data systems to adopt new 

solutions that can manage the new challenges of volume, 

variety, velocity, and veracity imposed by these huge 

amounts of data. Thus, storing data mechanisms in a big 

data environment like the Hadoop ecosystem is a pillar of 

its architecture. It comes as a sub-module called HDFS, 

capable of ensuring all operations related to data storage 

and accessibility. Among the operations that HDFS 

provides is the distribution of data over the Hadoop cluster, 

ensuring its subdivision and replication. This distribution 

follows a standard strategy that ensures the data durability 

and availability in all situations even in the event of 

hardware or software disasters. While effective for 

securing data, this strategy is not sufficient to optimize 

data placement in order to improve network flows and 

access times. Previous research has proposed to analyze 

the exploitation of data on HDFS and accordingly move 

the most requested data to nodes offering better response 

times. But this displacement generates additional traffic on 

the network, which can affect the general availability of 

the cluster. In this paper, we propose a mechanism for 

predicting the best Node in a DFS Grid that can guarantee 

the best response time, before placing data on the cluster. 

Thanks to this mechanism, we were able to reduce chunk 

movements by more than 30%, which led to a significant 

general optimization of the bandwidth occupation of the 

HDFS Cluster.    

 

Keywords: Big Data, Hadoop, HDFS, Deep Learning, 

Placement Strategy, RNN, Performance Optimization. 

 

1. INTRODUCTION  

Market research reports show that the total amount of 

data consumed worldwide reached 64.2 zettabytes in 2020 

and is expected to grow rapidly to 79 zettabytes in 2021. 

This number is expected to reach more than 180 zettabytes 

in 2025. Storage capacity will accordingly still be growing 

by an annual rate of 19.2% from 2020 to 2025 [1]. 

Such amounts of data can only be processed by Big 

Data systems, equipped with new architectures and 

technologies, capable of tracking the scale of this deluge 

of data. 

Among the most important issues that such a system 

must deal with are those that storage poses in a big data 

environment. Indeed, the large amount of data to be stored 

requires new tools and techniques to guarantee the 

accessibility and sustainability of this data. 

Many big data environments are based on distributed 

data storage systems called DFS (Distributed File Stems) 

[2]. DFS have a distributed architecture based on several 

nodes and networks, capable of guaranteeing the durability 

against hardware and software failures, while ensuring 

easy and fast access to this data. 

Hadoop, one of the pioneering systems in the world of 

Big Data, uses HDFS which is its standard DFS. The 

HDFS provides Hadoop with the ability to complete 

complex computations by bringing computational 

operations closer to distributed data across multiple 

machines to improve processing performance. The HDFS 

uses several techniques to facilitate data management, 

such as data striping, which allows data to be subdivided 

into small pieces called Chunks, and replication to several 

nodes in the cluster to avoid total data loss in case of 

failure. 

Replicas are usually generated when the file is created 

on HDFS and distributed over the cluster according to a 

basic strategy that has a unique objective of avoiding a 

total loss of data in case of a disaster affecting one or more 

machines or racks [3]. 

However, given the size that a DFS cluster can take, 

response times can be directly impacted by the locations 

assigned to the data by the placement strategy algorithm 

[4][5]. Therefore, the chunks placement strategy can be 

strongly involved in improving the overall performance of 

the Cluster, if it is smartly designed to be capable of 

choosing the best location for a chunk while respecting the 

constraints of "Disaster Recovery" provided for by the 

original HDFS placement strategy.  

In a previous work, we proposed to improve this 

placement strategy by introducing new data into the HDFS 

metadata schema, which allowed us to calculate the best 

location for a chunk, based on the previous performance of 
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the cluster nodes and the level of chunk solicitation. The 

result of analyzing this new metadata is a proposal to move 

chunks that are the least privileged and the most requested 

in reading process, to better locations if there are any. 

Obviously, additional data traffic will emerge because of 

move suggestions, and a Chunk can even be moved several 

times before finding an optimal node [6]. 

In this paper, we introduced a Deep Learning model, 

that can process collected performance information and 

requests statistics of Chunks already placed on the cluster 

and predicting the best location for Chunks at its first 

creation on the cluster. The main goal is to minimize data 

movement, and consequently, the excessive occupation of 

the cluster bandwidth [7]. 

We built a supervised learning method using recurrent 

neural networks (RNN). The training Data was based on 

the history of chunks' movements over the cluster and 

further information such as the identity of the writer and 

the size of the chunk. 

Training data was collected using the OptorSim 

simulator which allowed us to perform many simulations 

to create a rich and reliable training Dataset. 

The remainder of this paper is presented as follows: 

Related works in section 2 about the problematic of 

optimizing chunk placements. The objectives of the Deep 

Learning model in section 3. The Deep Learning Model 

we used in section 4. Discussion about results and loss 

measurement in section 5 and we finish this paper with a 

conclusion about the whole work. 

 

2. RELATED WORK 

In a previous work [8], we analyzed the architecture of 

HDFS, in purpose to propose an enhancement to the 

strategy of replica placement, which is by default basic and 

very limited. An improvement of more than 20% on the 

overall performance of the cluster is demonstrated, while 

respecting the basic rules of HDFS' initial placement 

strategy, which guarantee stability in case of failures. 

Beyond this result, we have demonstrated that the 

distribution of data across the cluster can have a significant 

impact on the overall performance of a DFS system, and 

that it makes sense to re-evaluate this distribution over 

time, in order to optimize and improve it. 

As a result, the strategy of placing blocks on nodes 

should not only take care of the initial locations, but also 

follow the state of response times, and make sure to move 

the chunks when needed [9]. 

One side effect of this new strategy is that the 

continuous movement of data can have an impact on the 

bandwidth of the entire cluster. Therefore, these 

movement operations should only be carried out during 

off-peak periods of bandwidth usage. Since the movement 

of chunks is not a primary operation, it can be postponed 

to periods when the operations on the cluster decreases. 

These periods can be determined by the Master Node on 

HDFS which can support the orchestration of these 

operations and their programming over time. 

That said, finding another way to properly place 

chunks without having to move them around too often can 

be much more relevant. This can be done if we have a way 

to recognize the best location for a block of data before 

making the first placement.  

In this work we have therefore turned to another 

alternative to mathematical calculation: Prediction through 

artificial intelligence. We used the previous moves of the 

chunks on the Grid, to predict the possible movements of 

a newly created chunk, and then designate the location that 

seems to best meet the response time requirements of that 

chunk. This prediction model has reduced the 

displacements proposed by the new chunk placement 

strategy based on demand and response time analyzes, by 

at least one displacement, while a chunk is moved three 

times in average to meet his optimum node. The model 

based on the prediction of the first placement of the chunk 

in the GRID has reduced traffic related to the movement 

of chunks by at least 33% in most cases of chunks 

requiring displacement to improve response times.  

The prediction model we propose must work closely 

with the proposed algorithm for moving chunks, because 

the training dataset of our model comes from the database 

constituted by the results of data displacement proposed by 

the algorithm of the new strategy of moving chunks on 

HDFS. 

In the next sections we will define a recurrent neural 

network (RNN), able to predict the Node that should be 

selected to displace a chunk to, that offers a better response 

time. If the response time of a node is correctly predicted, 

we can place the chunk at its best node at the time of its 

creation. And depending on the sharpness of the 

prediction, the work of moving chunks to better locations 

can be remarkably lightened.   
 

3. OBJECTIVE OF DEEP LEARNING MODEL 

As discussed in section 2, we were able to prove that 

setting up a system for selecting nodes to which a chunk 

can be moved to have improved response times (which we 

call chunk displacement node) is possible. By 

implementing an improved placement node selection 

strategy, significant improvements can be achieved on 

chunk reading times and the overall performance of the 

HDFS Cluster. So, we set up an algorithmic model that, 

based on data collected from nodes and other calculated 

information, can determine which of the nodes in the 

cluster can provide better response times for a chunk. The 

algorithm then orders the chunk to move and redo these 

calculations to see if another node can provide a better 

response time. 

This algorithm has proven its effectiveness after a few 

iterations of displacement. But in order not to penalize the 

bandwidth of the cluster, data movements must be made at 

times of downturn in activity on the cluster network. 

It should be noted that moving a chunk to a new node 

supposed to offer a better response time, does not 

necessarily guarantee the achievement of good results. 

Since the performance of a node is calculated based on the 

reading times of the chunks it contains previously, the 

reading times of the recently moved chunk can vary from 

the old averages if the operating conditions of this one is 

different. 
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Analysis of the exploitation of our new placement 

strategy implemented through our algorithm has shown 

that some chunks are moved more than once to find their 

best locations. Chunks are sometimes even sent back to a 

previous location after recalculating response times. 

The deep learning model we want to implement should 

allow us to predict the final location of a chunks at its first 

creation. This would avoid unnecessary displacements that 

the chunks' movement algorithm will surely propose. 

We therefore want to move from the schematized 

situation in Figure 1 to the schematized situation in Figure 

2. If the algorithm of the new placement strategy will 

propose to move the chunk according to the following 

sequence (Figure 1):  

1- Creation of the chunk on Node 1, 

2- After calculations, the improved placement strategy, 

algorithm suggests moving the chunk to Node 2 expected 

to offer a better response time, 

3- After update calculations, the algorithm suggests 

moving the chunk to Node 3 expected to offer a better 

response time than Node 2, 

4- After update calculations, the algorithm suggests the 

chunks to Node 2 once again since the actual readings 

times from Node 3 are lower than those recorded on Node 

2. 

The algorithm moves the chunk tree times before 

arriving at an optimal location. The DL prediction model 

should suggest that we place the chunk directly on Node 2 

at the moment of its creation (Figure 2). 

The question our model will have to answer is: Given 

a node or sequence of nodes on which a chunk has been 

placed successively, what is the next most likely node to 

be a placement proposal for that chunk? This is the task for 

which we train the model. The input of the model will be 

a sequence of node IDs in the Grid, and the model will 

need to be able to predict the next node capable of offering 

better response time. The last proposition should be the 

best one. 

The main objective is therefore to predict the best 

location for a chunk by trying to predict all the nodes 

where it can be moved by the replacement algorithm and 

keep the last prediction that is supposed to be the best. 

The algorithm developed in our previous work 

performs the displacement of chunks on average two to 

three times before the chunk is placed on an optimal node 

for the response time. A good prediction model will avoid 

at least one unnecessary data movement on the cluster 

network. 
 

 
 

Figure 1. Moving the chunk without predicting the best location 

 
Figure 2. Placing the chunk with a good prediction of the best location 

 

The prediction model will not replace the chunks 

movement algorithm based on calculations, but the two 

initiatives will complement each other to find the best 

locations for chunks, while avoiding unnecessary traffic. 

In addition, the algorithm based on the improved chunk 

placement strategy is the empirical way to be sure if a 

location is the best for a given chunk. The algorithm is also 

the provider training data for the prediction model. 

 

4. DEEP LEARNING MODEL DESIGN 

 

4.1. Training Data 

To train our Deep Learning model and prove its 

effectiveness, a dataset of learning parameters was setup 

using a simulator (optorSim), combined with the algorithm 

developed in our previous works and escribed in section 3.  

OptorSim is a simulator of Grids, used to simulate 

experiences on replications strategies in distributed 

architectures like DFS. 

We built a Grid, using OptorSim capabilities, and used 

the algorithm of placement optimization to perform 

multiple iterations of data displacement over the grid, to 

obtain better response times. Every displacement of 

chunks in the Grid is prepared and added to the training 

dataset. 

The keys data of the training dataset are [10]: 

- P point of creation of the chunk: it is a unique identifier 

that makes it possible to recognize the point of creation of 

the chunk. The creation point is the location of the user 

who create the chunk. The point of creation of chunk has a 

great impact on the future exploitation of this chunk and 

therefore on future performance related to this data. 

- T size of the chunk: in a system like HDFS the size of the 

chunk is generally fixed for all files, however work has 

shown that manipulating the size of chunks by modifying 

the data striping operation, can have positive results on 

response times. We conducted the constitution of our 

training dataset using several sizes of chunks in order to 

enrich our training dataset 

- History of the different locations of the chunks. The 

objective behind the inclusion of all past locations of the 

chunk is precisely to allow the artificial intelligence to 

include these locations as possible locations of the chunk.  

The location history is a composed input data, which 

we have split to form the final labeled training dataset [11]. 

The location history of a chunk before reaching an 

optimum location can be represented by a chain of 

positions with several values, where each value represents 

an ID of a node, for example (10, 21, 5, 11, 128, 200). 
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The first ID represents the position proposed by HDFS' 

original placement strategy.  

We constitute our learning Dataset by extracting each 

pair Pn, Pn + 1 from the chain of positions. The Target 

being the position Pn + 1. The preceding sequence will be 

transformed to several couples (origin node, destination 

node). 

(10, 21), (21, 5), (5, 11), (11, 128), (128, 200) 

Consequently, each line of the initial Dataset 

constituted by the values (P, T, H) will be subdivided into 

several lines (P, T, Pn, Pn + 1) where the column Pn + 1 is 

the target of the model. 

To use the prediction model, HDFS will therefore have 

to query the model at the time of chunk creation with the 

Pn position parameter being the ID of the node proposed 

by the HDFS original placement strategy. The algorithm 

will request the prediction of the next node several times 

again until the proposed node is already in the history of 

predictions or reach a determined number of predictions. 

We set the number of predictions recovered at three 

successive predictions because we noticed that in most 

cases, moving the chunk three displacements is sufficient 

to place it in an optimal node. The training dataset structure 

is as the following Table 1, where ID Node Pn + 1 is the 

target of our model. 

 
Table 1. Sample of training dataset 

 

USER ID 
(creation point) 

Size of 
chunk (T) 

ID Node  
Pn 

ID Node  
Pn + 1 

X 2000 10 6 

Z 1000 6 1 

W 500 12 3 

Y 4000 7 19 

 

4.2. Recurrent Neural Networks (RNN)  

The Deep Learning model we used is a Recursive 

Neural Network. This type of neural network, often used 

in natural language prediction models [12][13], is best 

suited to our purpose. Indeed, we can assimilate the 

prediction of the next placement node in a Grid to the 

search of the complementary letters of a word or the next 

word of a natural and logical sentence. 

The peculiarity of RNN networks compared to other 

neural networks is that they use the previous outputs as 

additional inputs and are perfectly adapted to the 

processing of sequential data [14][15]. 

This adapts to our scenario since the previous 

movements of chunks through the nodes of the Grid must 

participate in the prediction of the nodes N + 1. 

The architecture in Figure 3 [16] represents a standard 

recursive neural network. 

Each time the model is executed, the previous results 

and an internal state of the model are transmitted.  The 

model returns a prediction for the next node and its new 

state. We retransmit the prediction and the new state to 

continue generating positions. 

We used Google's TensorFlow library and the Keras 

Machine Learning library, inside the Anaconda 

environment. 

 

 
Figure 3. Traditional RNN architecture 

 

5. MODEL ERROR ASSESSMENT 

For the evaluation of the model error, we used two loss 

functions: Mean squared error (MSE) and mean absolute 

error (MAE) (Figures 4 and 5). 
 

5.1. Mean Squared Error 

Mean Squared Error (MSE) is the most known loss 

function. However, it remains relevant to assess the gap 

between the performance of the learning model and the 

real expected values (labels). 

The MSE is computed by calculating the difference 

between the predictions and the expected values [17]. This 

difference is squared to avoid negative values. 

The mathematical Equation (1) for the Mean Squared 

Error is therefore. 

( )
2

1

1 N

i i
i

MSE y y
N =

= −  (1) 

where, yi is the empirically measured value and iy  is the 

corresponding prediction calculated by our prediction 

model.  

The MSE is ideal to ensure that the trained model does 

not have aberrant predictions with huge errors, since it 

gives greater importance to these kinds of errors because 

of the squared part of the function that amplifies the 

glaring deviations. 

On the other hand, if model makes a wrong prediction 

quite far from the actual value, the squared part of the 

function will amplify this error and will affect the whole 

prediction results. However, in many practical cases, those 

bad predictions are ignored and the most importance is 

given to a model that works well in most cases. 

The analysis of the evolution of the mean squared error 

of our model (Figure 4) shows that the value of the MSE 

stops evolving substantially after the Epoch 1,000. This 

indicates that the model has converged well. 
 

 
 Figure 4. Evaluation of Mean Squared Error 

 



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 49, Vol. 13, No. 4, Dec. 2021 

 198 

The curve of the loss function stabilizes at its lowest 

level, which confirms that the model has converged and 

that it can be used in the desired prediction. 

The training and validation loss decrease exponentially 

as the number of epochs increase, meaning that the model 

become more accurate ate the end of training. 

  
5.2. The Average Absolute Error 

Mean Absolute Error (MAE) is slightly different from 

the MSE, but it provides very a different assessments of 

loss gaps. The MAE is the sum of the absolute values of 

the difference between the model's predictions and the 

expected value, averaged against all the data. 

All calculated values in the Mean Absolute Error have 

the same weights. Therefore, large errors value does not 

have an exaggerated weight. The Mean Absolute Error 

function provides a uniformed measure of the model 

performance [18] [19].  

The mathematical Equation (2) for the Mean Absolute 

Error is: 

1

1 N

i i
i

MAE y y
N =

= −  (2) 

where, yi is the empirically measured value and iy  is the 

corresponding prediction calculated by our prediction 

model.  

Analysis of the Mean Absolute Error curve shows that 

the model converged. 

 

 
 

Figure 5. Evaluation of the Mean Absolute Error 

 

We have arrived at a stable and acceptable average 

(Figure 5) of errors in our context as the validation loss is 

stable at his nearest values to 0. We thus confirm the 

convergence of the model and the values collected during 

the evaluation of the mean squared error. 

 

5.3. Prediction Test 

The ultimate test for a deep learning model is the 

confrontation with new labeled data never introduced 

during the learning phase. 

That's why we divided our Dataset into two parts, one 

that was used for learning and another that we used to test 

our model with. 

The curve in Figure 6 illustrates the difference between 

the predictions on the Test Dataset and the labels on the 

same Dataset. 

 
Figure 6. Prediction test 

 

The predicted values are quite similar to the actual 

values. The results of the model prediction test are 

satisfactory so the model can be considered as accurate. 

 

6. CONCLUSION 

In a previous works we demonstrated the response time 

savings that can be generated by placing data on 

appropriate nodes on a DFS cluster. We calculated the best 

location for a Chunk and moved it to that location. 

We also discussed the cost of moving chunks over the 

cluster on the network bandwidth and proposed that it must 

be done outside the period of intense operation of the 

cluster. 

However, having the ability to determine the best 

location for a Chunk without having to move it after its 

first placement will certainly reduce the impact of our 

algorithm on bandwidth. 

Determining the appropriate nodes in terms of response 

time for a Chunk means determining the nodes through 

which the chunk can transit during these movements, 

proposed by the chunk replacement algorithm, and 

selecting the last proposed node, assuming that it is this 

node that offers the best response times. 

Given that the chunk placement algorithm proposes 

each time to displace the chunk to a single node, we built 

a deep learning model that can predict the next node that 

the algorithm will propose to host the chunk. Running the 

model recursively, we were able to define a set of transit 

nodes and select the last node in the transition chain to be 

the first placement of the chunk.  

To establish the Training Dataset, we adapted the list 

of all previous movements of Chunks -provided by the 

replacement algorithm- by defining the destination node of 

each movement as the target of the DL model. 

The main objective of this work is to prove the 

possibility of using Deep Learning to predict an optimized 

location of a chunk on a network of nodes of a DFS 

Cluster. Then place the chunk in the predicted placement 

at his creation.  

Given that the replacement algorithm proposes to move 

the disadvantaged chunks (in terms of response time) to 

other nodes able to ensure a better response time, it was 

judicious to use AI to reduce these movements at most, by 

predicting the destination to which the displacement 

algorithm will lead. 
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In the case of HDFS for example, when creating the 

three replicas of a chunk, the Master offers three slots 

according to the standard HDFS strategy, namely two 

nodes on the rack of the user who takes care of the writing 

and a third on another rack. By including the location 

prediction model in this phase, the client code can write 

the chunk directly to the most optimized location.  

The algorithm of replacement will then confirm this 

proposition based on statistics or propose a new node that 

will be taken to consideration by the deep learning model, 

for the next predictions. 
 

NOMENCLATURES 

 

1. Acronyms  

DFS Distributed File System 

HDFS          Hadoop File System 

DL           Deep Learning 

RNN            Recursive Neural Network 
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