

International Journal on

“Technical and Physical Problems of Engineering”

(IJTPE)

Published by International Organization of IOTPE

ISSN 2077-3528

IJTPE Journal

www.iotpe.com

ijtpe@iotpe.com

December 2021 Issue 49 Volume 13 Number 4 Pages 194-200

194

DEEP LEARNING FOR OPTIMIZATION OF CHUNKS PLACEMENT ON

HADOOP/HDFS

A. Elomari L. Hassouni A. Maizate

RITM-ESTC / CED-ENSEM, University of Hassan II Casablanca, Morocco

akramelomari@gmail.com, lhassouni@hotmail.com, maizate@hotmail.com

Abstract- In an era where the amounts of data generated

by systems of different types have become gigantic, Big

Data systems are trying to ensure proper management of

this data by ensuring its security, accessibility, and

optimization of its placement. This data explosion has over

passed all traditional data storage infrastructures and

solutions and has forced big data systems to adopt new

solutions that can manage the new challenges of volume,

variety, velocity, and veracity imposed by these huge

amounts of data. Thus, storing data mechanisms in a big

data environment like the Hadoop ecosystem is a pillar of

its architecture. It comes as a sub-module called HDFS,

capable of ensuring all operations related to data storage

and accessibility. Among the operations that HDFS

provides is the distribution of data over the Hadoop cluster,

ensuring its subdivision and replication. This distribution

follows a standard strategy that ensures the data durability

and availability in all situations even in the event of

hardware or software disasters. While effective for

securing data, this strategy is not sufficient to optimize

data placement in order to improve network flows and

access times. Previous research has proposed to analyze

the exploitation of data on HDFS and accordingly move

the most requested data to nodes offering better response

times. But this displacement generates additional traffic on

the network, which can affect the general availability of

the cluster. In this paper, we propose a mechanism for

predicting the best Node in a DFS Grid that can guarantee

the best response time, before placing data on the cluster.

Thanks to this mechanism, we were able to reduce chunk

movements by more than 30%, which led to a significant

general optimization of the bandwidth occupation of the

HDFS Cluster.

Keywords: Big Data, Hadoop, HDFS, Deep Learning,

Placement Strategy, RNN, Performance Optimization.

1. INTRODUCTION

Market research reports show that the total amount of

data consumed worldwide reached 64.2 zettabytes in 2020

and is expected to grow rapidly to 79 zettabytes in 2021.

This number is expected to reach more than 180 zettabytes

in 2025. Storage capacity will accordingly still be growing

by an annual rate of 19.2% from 2020 to 2025 [1].

Such amounts of data can only be processed by Big

Data systems, equipped with new architectures and

technologies, capable of tracking the scale of this deluge

of data.

Among the most important issues that such a system

must deal with are those that storage poses in a big data

environment. Indeed, the large amount of data to be stored

requires new tools and techniques to guarantee the

accessibility and sustainability of this data.

Many big data environments are based on distributed

data storage systems called DFS (Distributed File Stems)

[2]. DFS have a distributed architecture based on several

nodes and networks, capable of guaranteeing the durability

against hardware and software failures, while ensuring

easy and fast access to this data.

Hadoop, one of the pioneering systems in the world of

Big Data, uses HDFS which is its standard DFS. The

HDFS provides Hadoop with the ability to complete

complex computations by bringing computational

operations closer to distributed data across multiple

machines to improve processing performance. The HDFS

uses several techniques to facilitate data management,

such as data striping, which allows data to be subdivided

into small pieces called Chunks, and replication to several

nodes in the cluster to avoid total data loss in case of

failure.

Replicas are usually generated when the file is created

on HDFS and distributed over the cluster according to a

basic strategy that has a unique objective of avoiding a

total loss of data in case of a disaster affecting one or more

machines or racks [3].

However, given the size that a DFS cluster can take,

response times can be directly impacted by the locations

assigned to the data by the placement strategy algorithm

[4][5]. Therefore, the chunks placement strategy can be

strongly involved in improving the overall performance of

the Cluster, if it is smartly designed to be capable of

choosing the best location for a chunk while respecting the

constraints of "Disaster Recovery" provided for by the

original HDFS placement strategy.

In a previous work, we proposed to improve this

placement strategy by introducing new data into the HDFS

metadata schema, which allowed us to calculate the best

location for a chunk, based on the previous performance of

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 49, Vol. 13, No. 4, Dec. 2021

 195

the cluster nodes and the level of chunk solicitation. The

result of analyzing this new metadata is a proposal to move

chunks that are the least privileged and the most requested

in reading process, to better locations if there are any.

Obviously, additional data traffic will emerge because of

move suggestions, and a Chunk can even be moved several

times before finding an optimal node [6].

In this paper, we introduced a Deep Learning model,

that can process collected performance information and

requests statistics of Chunks already placed on the cluster

and predicting the best location for Chunks at its first

creation on the cluster. The main goal is to minimize data

movement, and consequently, the excessive occupation of

the cluster bandwidth [7].

We built a supervised learning method using recurrent

neural networks (RNN). The training Data was based on

the history of chunks' movements over the cluster and

further information such as the identity of the writer and

the size of the chunk.

Training data was collected using the OptorSim

simulator which allowed us to perform many simulations

to create a rich and reliable training Dataset.

The remainder of this paper is presented as follows:

Related works in section 2 about the problematic of

optimizing chunk placements. The objectives of the Deep

Learning model in section 3. The Deep Learning Model

we used in section 4. Discussion about results and loss

measurement in section 5 and we finish this paper with a

conclusion about the whole work.

2. RELATED WORK

In a previous work [8], we analyzed the architecture of

HDFS, in purpose to propose an enhancement to the

strategy of replica placement, which is by default basic and

very limited. An improvement of more than 20% on the

overall performance of the cluster is demonstrated, while

respecting the basic rules of HDFS' initial placement

strategy, which guarantee stability in case of failures.

Beyond this result, we have demonstrated that the

distribution of data across the cluster can have a significant

impact on the overall performance of a DFS system, and

that it makes sense to re-evaluate this distribution over

time, in order to optimize and improve it.

As a result, the strategy of placing blocks on nodes

should not only take care of the initial locations, but also

follow the state of response times, and make sure to move

the chunks when needed [9].

One side effect of this new strategy is that the

continuous movement of data can have an impact on the

bandwidth of the entire cluster. Therefore, these

movement operations should only be carried out during

off-peak periods of bandwidth usage. Since the movement

of chunks is not a primary operation, it can be postponed

to periods when the operations on the cluster decreases.

These periods can be determined by the Master Node on

HDFS which can support the orchestration of these

operations and their programming over time.

That said, finding another way to properly place

chunks without having to move them around too often can

be much more relevant. This can be done if we have a way

to recognize the best location for a block of data before

making the first placement.

In this work we have therefore turned to another

alternative to mathematical calculation: Prediction through

artificial intelligence. We used the previous moves of the

chunks on the Grid, to predict the possible movements of

a newly created chunk, and then designate the location that

seems to best meet the response time requirements of that

chunk. This prediction model has reduced the

displacements proposed by the new chunk placement

strategy based on demand and response time analyzes, by

at least one displacement, while a chunk is moved three

times in average to meet his optimum node. The model

based on the prediction of the first placement of the chunk

in the GRID has reduced traffic related to the movement

of chunks by at least 33% in most cases of chunks

requiring displacement to improve response times.

The prediction model we propose must work closely

with the proposed algorithm for moving chunks, because

the training dataset of our model comes from the database

constituted by the results of data displacement proposed by

the algorithm of the new strategy of moving chunks on

HDFS.

In the next sections we will define a recurrent neural

network (RNN), able to predict the Node that should be

selected to displace a chunk to, that offers a better response

time. If the response time of a node is correctly predicted,

we can place the chunk at its best node at the time of its

creation. And depending on the sharpness of the

prediction, the work of moving chunks to better locations

can be remarkably lightened.

3. OBJECTIVE OF DEEP LEARNING MODEL

As discussed in section 2, we were able to prove that

setting up a system for selecting nodes to which a chunk

can be moved to have improved response times (which we

call chunk displacement node) is possible. By

implementing an improved placement node selection

strategy, significant improvements can be achieved on

chunk reading times and the overall performance of the

HDFS Cluster. So, we set up an algorithmic model that,

based on data collected from nodes and other calculated

information, can determine which of the nodes in the

cluster can provide better response times for a chunk. The

algorithm then orders the chunk to move and redo these

calculations to see if another node can provide a better

response time.

This algorithm has proven its effectiveness after a few

iterations of displacement. But in order not to penalize the

bandwidth of the cluster, data movements must be made at

times of downturn in activity on the cluster network.

It should be noted that moving a chunk to a new node

supposed to offer a better response time, does not

necessarily guarantee the achievement of good results.

Since the performance of a node is calculated based on the

reading times of the chunks it contains previously, the

reading times of the recently moved chunk can vary from

the old averages if the operating conditions of this one is

different.

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 49, Vol. 13, No. 4, Dec. 2021

 196

Analysis of the exploitation of our new placement

strategy implemented through our algorithm has shown

that some chunks are moved more than once to find their

best locations. Chunks are sometimes even sent back to a

previous location after recalculating response times.

The deep learning model we want to implement should

allow us to predict the final location of a chunks at its first

creation. This would avoid unnecessary displacements that

the chunks' movement algorithm will surely propose.

We therefore want to move from the schematized

situation in Figure 1 to the schematized situation in Figure

2. If the algorithm of the new placement strategy will

propose to move the chunk according to the following

sequence (Figure 1):

1- Creation of the chunk on Node 1,

2- After calculations, the improved placement strategy,

algorithm suggests moving the chunk to Node 2 expected

to offer a better response time,

3- After update calculations, the algorithm suggests

moving the chunk to Node 3 expected to offer a better

response time than Node 2,

4- After update calculations, the algorithm suggests the

chunks to Node 2 once again since the actual readings

times from Node 3 are lower than those recorded on Node

2.

The algorithm moves the chunk tree times before

arriving at an optimal location. The DL prediction model

should suggest that we place the chunk directly on Node 2

at the moment of its creation (Figure 2).

The question our model will have to answer is: Given

a node or sequence of nodes on which a chunk has been

placed successively, what is the next most likely node to

be a placement proposal for that chunk? This is the task for

which we train the model. The input of the model will be

a sequence of node IDs in the Grid, and the model will

need to be able to predict the next node capable of offering

better response time. The last proposition should be the

best one.

The main objective is therefore to predict the best

location for a chunk by trying to predict all the nodes

where it can be moved by the replacement algorithm and

keep the last prediction that is supposed to be the best.

The algorithm developed in our previous work

performs the displacement of chunks on average two to

three times before the chunk is placed on an optimal node

for the response time. A good prediction model will avoid

at least one unnecessary data movement on the cluster

network.

Figure 1. Moving the chunk without predicting the best location

Figure 2. Placing the chunk with a good prediction of the best location

The prediction model will not replace the chunks

movement algorithm based on calculations, but the two

initiatives will complement each other to find the best

locations for chunks, while avoiding unnecessary traffic.

In addition, the algorithm based on the improved chunk

placement strategy is the empirical way to be sure if a

location is the best for a given chunk. The algorithm is also

the provider training data for the prediction model.

4. DEEP LEARNING MODEL DESIGN

4.1. Training Data

To train our Deep Learning model and prove its

effectiveness, a dataset of learning parameters was setup

using a simulator (optorSim), combined with the algorithm

developed in our previous works and escribed in section 3.

OptorSim is a simulator of Grids, used to simulate

experiences on replications strategies in distributed

architectures like DFS.

We built a Grid, using OptorSim capabilities, and used

the algorithm of placement optimization to perform

multiple iterations of data displacement over the grid, to

obtain better response times. Every displacement of

chunks in the Grid is prepared and added to the training

dataset.

The keys data of the training dataset are [10]:

- P point of creation of the chunk: it is a unique identifier

that makes it possible to recognize the point of creation of

the chunk. The creation point is the location of the user

who create the chunk. The point of creation of chunk has a

great impact on the future exploitation of this chunk and

therefore on future performance related to this data.

- T size of the chunk: in a system like HDFS the size of the

chunk is generally fixed for all files, however work has

shown that manipulating the size of chunks by modifying

the data striping operation, can have positive results on

response times. We conducted the constitution of our

training dataset using several sizes of chunks in order to

enrich our training dataset

- History of the different locations of the chunks. The

objective behind the inclusion of all past locations of the

chunk is precisely to allow the artificial intelligence to

include these locations as possible locations of the chunk.

The location history is a composed input data, which

we have split to form the final labeled training dataset [11].

The location history of a chunk before reaching an

optimum location can be represented by a chain of

positions with several values, where each value represents

an ID of a node, for example (10, 21, 5, 11, 128, 200).

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 49, Vol. 13, No. 4, Dec. 2021

 197

The first ID represents the position proposed by HDFS'

original placement strategy.

We constitute our learning Dataset by extracting each

pair Pn, Pn + 1 from the chain of positions. The Target

being the position Pn + 1. The preceding sequence will be

transformed to several couples (origin node, destination

node).

(10, 21), (21, 5), (5, 11), (11, 128), (128, 200)

Consequently, each line of the initial Dataset

constituted by the values (P, T, H) will be subdivided into

several lines (P, T, Pn, Pn + 1) where the column Pn + 1 is

the target of the model.

To use the prediction model, HDFS will therefore have

to query the model at the time of chunk creation with the

Pn position parameter being the ID of the node proposed

by the HDFS original placement strategy. The algorithm

will request the prediction of the next node several times

again until the proposed node is already in the history of

predictions or reach a determined number of predictions.

We set the number of predictions recovered at three

successive predictions because we noticed that in most

cases, moving the chunk three displacements is sufficient

to place it in an optimal node. The training dataset structure

is as the following Table 1, where ID Node Pn + 1 is the

target of our model.

Table 1. Sample of training dataset

USER ID
(creation point)

Size of
chunk (T)

ID Node
Pn

ID Node
Pn + 1

X 2000 10 6

Z 1000 6 1

W 500 12 3

Y 4000 7 19

4.2. Recurrent Neural Networks (RNN)

The Deep Learning model we used is a Recursive

Neural Network. This type of neural network, often used

in natural language prediction models [12][13], is best

suited to our purpose. Indeed, we can assimilate the

prediction of the next placement node in a Grid to the

search of the complementary letters of a word or the next

word of a natural and logical sentence.

The peculiarity of RNN networks compared to other

neural networks is that they use the previous outputs as

additional inputs and are perfectly adapted to the

processing of sequential data [14][15].

This adapts to our scenario since the previous

movements of chunks through the nodes of the Grid must

participate in the prediction of the nodes N + 1.

The architecture in Figure 3 [16] represents a standard

recursive neural network.

Each time the model is executed, the previous results

and an internal state of the model are transmitted. The

model returns a prediction for the next node and its new

state. We retransmit the prediction and the new state to

continue generating positions.

We used Google's TensorFlow library and the Keras

Machine Learning library, inside the Anaconda

environment.

Figure 3. Traditional RNN architecture

5. MODEL ERROR ASSESSMENT

For the evaluation of the model error, we used two loss

functions: Mean squared error (MSE) and mean absolute

error (MAE) (Figures 4 and 5).

5.1. Mean Squared Error

Mean Squared Error (MSE) is the most known loss

function. However, it remains relevant to assess the gap

between the performance of the learning model and the

real expected values (labels).

The MSE is computed by calculating the difference

between the predictions and the expected values [17]. This

difference is squared to avoid negative values.

The mathematical Equation (1) for the Mean Squared

Error is therefore.

()
2

1

1 N

i i
i

MSE y y
N =

= − (1)

where, yi is the empirically measured value and iy is the

corresponding prediction calculated by our prediction

model.

The MSE is ideal to ensure that the trained model does

not have aberrant predictions with huge errors, since it

gives greater importance to these kinds of errors because

of the squared part of the function that amplifies the

glaring deviations.

On the other hand, if model makes a wrong prediction

quite far from the actual value, the squared part of the

function will amplify this error and will affect the whole

prediction results. However, in many practical cases, those

bad predictions are ignored and the most importance is

given to a model that works well in most cases.

The analysis of the evolution of the mean squared error

of our model (Figure 4) shows that the value of the MSE

stops evolving substantially after the Epoch 1,000. This

indicates that the model has converged well.

 Figure 4. Evaluation of Mean Squared Error

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 49, Vol. 13, No. 4, Dec. 2021

 198

The curve of the loss function stabilizes at its lowest

level, which confirms that the model has converged and

that it can be used in the desired prediction.

The training and validation loss decrease exponentially

as the number of epochs increase, meaning that the model

become more accurate ate the end of training.

5.2. The Average Absolute Error

Mean Absolute Error (MAE) is slightly different from

the MSE, but it provides very a different assessments of

loss gaps. The MAE is the sum of the absolute values of

the difference between the model's predictions and the

expected value, averaged against all the data.

All calculated values in the Mean Absolute Error have

the same weights. Therefore, large errors value does not

have an exaggerated weight. The Mean Absolute Error

function provides a uniformed measure of the model

performance [18] [19].

The mathematical Equation (2) for the Mean Absolute

Error is:

1

1 N

i i
i

MAE y y
N =

= − (2)

where, yi is the empirically measured value and iy is the

corresponding prediction calculated by our prediction

model.

Analysis of the Mean Absolute Error curve shows that

the model converged.

Figure 5. Evaluation of the Mean Absolute Error

We have arrived at a stable and acceptable average

(Figure 5) of errors in our context as the validation loss is

stable at his nearest values to 0. We thus confirm the

convergence of the model and the values collected during

the evaluation of the mean squared error.

5.3. Prediction Test

The ultimate test for a deep learning model is the

confrontation with new labeled data never introduced

during the learning phase.

That's why we divided our Dataset into two parts, one

that was used for learning and another that we used to test

our model with.

The curve in Figure 6 illustrates the difference between

the predictions on the Test Dataset and the labels on the

same Dataset.

Figure 6. Prediction test

The predicted values are quite similar to the actual

values. The results of the model prediction test are

satisfactory so the model can be considered as accurate.

6. CONCLUSION

In a previous works we demonstrated the response time

savings that can be generated by placing data on

appropriate nodes on a DFS cluster. We calculated the best

location for a Chunk and moved it to that location.

We also discussed the cost of moving chunks over the

cluster on the network bandwidth and proposed that it must

be done outside the period of intense operation of the

cluster.

However, having the ability to determine the best

location for a Chunk without having to move it after its

first placement will certainly reduce the impact of our

algorithm on bandwidth.

Determining the appropriate nodes in terms of response

time for a Chunk means determining the nodes through

which the chunk can transit during these movements,

proposed by the chunk replacement algorithm, and

selecting the last proposed node, assuming that it is this

node that offers the best response times.

Given that the chunk placement algorithm proposes

each time to displace the chunk to a single node, we built

a deep learning model that can predict the next node that

the algorithm will propose to host the chunk. Running the

model recursively, we were able to define a set of transit

nodes and select the last node in the transition chain to be

the first placement of the chunk.

To establish the Training Dataset, we adapted the list

of all previous movements of Chunks -provided by the

replacement algorithm- by defining the destination node of

each movement as the target of the DL model.

The main objective of this work is to prove the

possibility of using Deep Learning to predict an optimized

location of a chunk on a network of nodes of a DFS

Cluster. Then place the chunk in the predicted placement

at his creation.

Given that the replacement algorithm proposes to move

the disadvantaged chunks (in terms of response time) to

other nodes able to ensure a better response time, it was

judicious to use AI to reduce these movements at most, by

predicting the destination to which the displacement

algorithm will lead.

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 49, Vol. 13, No. 4, Dec. 2021

 199

In the case of HDFS for example, when creating the

three replicas of a chunk, the Master offers three slots

according to the standard HDFS strategy, namely two

nodes on the rack of the user who takes care of the writing

and a third on another rack. By including the location

prediction model in this phase, the client code can write

the chunk directly to the most optimized location.

The algorithm of replacement will then confirm this

proposition based on statistics or propose a new node that

will be taken to consideration by the deep learning model,

for the next predictions.

NOMENCLATURES

1. Acronyms

DFS Distributed File System

HDFS Hadoop File System

DL Deep Learning

RNN Recursive Neural Network

REFERENCES

[1] Statista Digital Economy Compass, www.statista.

com, 2021.

[2] A. Elomari, A. Maizate, L. Hassouni, "Data storage in

big data context: A survey", The 3rd International

Conference on Systems of Collaboration (SysCo), 2016.

[3] G. Bhatt, M. Bhavsar, “Performance analysis of local,

network and distributed file systems running inside user’s

virtual machines in cloud environment”, Advances in

Modelling and Analysis B, vol. 61, no. 1, pp. 48-55, Mar.

2018.

[4] N. Mostafa, I. Al Ridhawi, A. Hamza, “An intelligent

dynamic replica selection model within grid systems”,

IEEE 8th GCC Conference and Exhibition, 2015.

[5] M. Nithya and N.U. Maheshwari, “Load rebalancing

for Hadoop Distributed File System using distributed hash

table”, International Conference on Intelligent Sustainable

Systems (ICISS), 2017.

[6] Y. Wu, F. Ye, K. Chen, W. Zheng, “Modeling of

distributed file systems for practical performance

analysis'', IEEE Trans. Parallel Distrib. Syst., vol. 25, no.

1, pp. 156-166, Jan. 2014.

[7] M. Hajeer, D. Dasgupta, "Handling Big Data Using a

Data-Aware HDFS and Evolutionary Clustering

Technique", Transactions on Big Data, vol. 5, no. 2, pp.

134-147, 1 June 2019.

[8] A. Elomari, L. Hassouni, A. Maizate, “New Data

Placement Strategy in the HADOOP Framework”,

International Journal of Advanced Computer Science and

Applications (IJACSA), 2021.

[9] V. Venkataramanachary, E. Reveron, W. Shi, "Storage

and Rack Sensitive Replica Placement Algorithm for

Distributed Platform with Data as Files", International

Conference on COMmunication Systems and NETworkS

(COMSNETS), pp. 535-538, 2020.

[10] E. Yazan, M.F. Talu, “Comparison of the stochastic

gradient descent-based optimization techniques”,

International Artificial Intelligence and Data Processing

Symposium (IDAP), 2017.

[11] C. Guobei, Y. Wenfu, L. Wei, Z. Xuan, Y. Jian, Z.

Xiaoning, "Method for generating infrared big data for

deep learning algorithm training by using small sample

data", IEEE International Conference on Signal,

Information and Data Processing (ICSIDP), pp. 1-5, 2019.

[12] J. Klejsa, P. Hedelin, C. Zhou, R. Fejgin, L.

Villemoes, "High-quality Speech Coding with Sample

RNN", ICASSP - IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp.

7155-7159, 2019.

[13] N. Atashafrazeh, A. Farzan, "A Review of Using

Machine Learning Algorithms for Image Retrieval

Words", International Journal on Technical and Physical

Problems of Engineering (IJTPE), Issue 20, Vol. 6, No. 3,

pp. 139-144, September 2014.

[14] Y. Denny Prabowo, H.L.H.S. Warnars, W. Budiharto,

A.I. Kistijantoro, Y. Heryadi, et al., "LSTM and Simple

RNN Comparison in the Problem of Sequence to Sequence

on Conversation Data Using Bahasa Indonesia",

Indonesian Association for Pattern Recognition

International Conference (INAPR), pp. 51-56, 2018.

[15] D. Choi, J. Han, S. Park, S. Hong, "Comparative

Study of CNN and RNN for Motor fault Diagnosis Using

Deep Learning", IEEE 7th International Conference on

Industrial Engineering and Applications (ICIEA), pp. 693-

696, 2020.

[16] F. Chollet, “Deep learning with python”, O'reilly

Media, p. 196, 2021.

[17] Y. Sai, R. Jinxia, L. Zhongxia, “Learning of Neural

Networks Based on Weighted Mean Squares Error

Function”, Second International Symposium on

Computational Intelligence and Design, 2009.

[18] L. Mendo, “Estimation of a probability with

guaranteed normalized mean absolute error”, IEEE

Communications Letters, vol. 13, no. 11, pp. 817-819,

Nov. 2009.

[19] S. Kheiri, V. Yousefi, S. Rajebi, "Evaluation of K-

Nearest Neighbor, Bayesian, Perceptron, RBF and SVM

Neural Networks in Diagnosis of Dermatology Disease",

International Journal on Technical and Physical Problems

of Engineering (IJTPE), Issue 42, Vol. 12, No. 1, pp. 114-

120, March 2020.

BIOGRAPHIES

Akram Elomari was born in Meknes

Morocco, 1981. He received his

Engineering Diploma in Computer

Science from Hassania School of Public

Works, Morocco in 2004 and a

Specialized Master on Project and

Program Management from SKEMA

Business School, France in 2011. He is currently an ECM

and BPM specialist and have a various experience in

output management and EDITIC field. In addition, he is

preparing a Ph.D. in Distributed Data Storage system in

University of Hassan II Casablanca, Morocco. His

research interests are focalized on Big Data storage and

analysis systems.

International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 49, Vol. 13, No. 4, Dec. 2021

 200

 Larbi Hassouni has a Ph.D. in

Computing Science from Aix Marseille

University, France. He was an Engineer

of Marseille Central School, Marseille,

France. His research topics are big data,

machine learning, deep learning, E-

learning, IA.

Abderrahim Maizate was born in

Casablanca, Morocco in 1979. He

received his Engineering Diploma in

Computer Science from the Hassania

School of Public Works, Morocco in

2004 and DESA degree from ENSIAS,

Morocco in 2007. Then, he received his

Ph.D. degree from Chouaib Doukkali University, El

Jadida, Morocco. He is currently, a Professor Researcher

at Hassan II University, Casablanca, Morocco. His

research interests are wireless communication, mobile

communication, wireless sensor networks, quality of

service (QoS) guarantees and big-data.

