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Abstract- The characteristics of the kinematic vibrations 

of a free wheelset with a conical profile and the influence 

of the mathematical structure of forces on the stability of 

motion are considered. The qualitative analysis of the 

stability conditions of the hypothetical wheel module of 

the rail crew was carried out on the basis of the direct 

Lyapunov method using the concept of mathematical 

structure of forces of the mechanical system. On the one 

hand, it facilitates the process of constructing new 

quadratic Lyapunov functions in a matrix form, and on the 

other, it can serve as a benchmark for practical structural 

changes in the system in order to improve its passive 

stabilization. Obtained in the work necessary and 

sufficient conditions of stability of the wheel pair with a 

conical profile can be used in the study of the stability of 

modern designs of rail crews. A simple method is proposed 

for choosing the characteristics of the rigidity of the 

axle-box suspension of the wheelset, which provides the 

necessary stability margin for the parameter of the 

longitudinal speed of movement. In addition, the critical 

speed does not depend on the value of the creep coefficient 

(it is determined by the given stiffness characteristic of the 

axle-box suspension and geometric parameters of wheelset, 

including conical parameter). 
 

Keywords: Wheelset Model, Condition Stability, 

Lyapunov Functions. 
 

1. INTRODUCTION 

Dynamics of the wheelset continues to attract attention 

of numerous researchers [6, 7, 25, 33, 34], despite the 

considerable age of the subject of the study [8, 10, 18, 19, 

20, 21, 26, 27]. The reason for this interest is simple: it is 

associated with the emergence of new types of high-speed 

rail vehicles and issues of ensuring safe railway operation. 

However, the very mechanical essence of the phenomenon, 

which serves as a reliable control system for the obtained 

numerical results, often can be lost in the practice of a 

specific comprehensive numerical analysis of the next 

model [1, 30]. Meanwhile, numerical testing of general 

analytical results on the basis of more complete or new 

refined mathematical models makes it possible to evaluate 

the area of results continuity. 

 

Current article presents the results of an analytical 
analysis of the wheelset stability conditions in straight-line 
track sections. The results were obtained on the basis of 
Lyapunov function method [2, 3, 4, 5, 9, 14, 15, 31, 32]. 

Also, the fundamental possibility of constructive solutions 
(aimed at providing passive stabilization of a hypothetical 
model of a wheel module) is discussed on basis of concept 
of force structure [8, 11, 12, 13, 16, 17, 23, 28, 29]. 

The presence of conicity of the wheelset’s rolling 
surface is the most significant factor (element) of its 

construction design and the main reason for its peculiar 
dynamic behavior. Introducing of conicity to the wheelset 
design is one of the intuitive methods of passive centering 
(stabilization) of straight-line motion of the wheelset with 
a cylindrical profile of rolling, which is "indifferent" to 
possible changes in the direction of motion (occurrence of 

yaw angles). 
Figure 1,a illustrates the positive effect of passive 

stabilization of the wheelset with the introducing of the 
conic element - the wheelset’s mass center is in 
unperturbed position (in the absence of lateral 
displacement); and in this case it takes the lowest of all 

possible positions. Since sufficiently small transverse 
deviations from the neutral position are realized due to 
rotation of relatively instantaneous center of velocity M in 
the vertical transverse plane. There is the opposite effect 
for the case (Figure 1,b) (in the unperturbed position, the 
mass center of the wheelset is in the highest position, 

which would lead to slippage). 
It should be noted that the analysis of the dynamic 

stability of the wheelset is much more complicated. 
 

 
                  (a)                                 (b) 

Figure 1. Illustration of the conicity effect impact, a- it is auspicious in 
terms of centering; b- it leads to "slippage" from the highest possible 

position of the mass center 
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2. KINEMATIC OSCILLATIONS OF A FREE 

WHEELSET 

Assuming that there is no slippage at the points of 

contact between the wheelset and the rails, this leads to 

relations that are called equations of kinematic 

oscillations. 

0

;
V

y V y
dr


 = = −  (1) 

The first equation indicates the absence of transverse 

slippage. Total slippage is generated by the velocity y  

and the transverse component of the longitudinal velocity 

V−  (Figure 2); the second equation indicates the 

absence of slippage in the longitudinal direction (indeed, if 

there is a transverse displacement y  on the left sloping, 

the rolling radius will increase by a value r y =  , and 

the linear longitudinal velocity will increase by a value 

0/r y V r  =   , then the yawing angular velocity   

is determined by the second equation of the system (1)). In 

this case, deviations of the variables satisfy the relation (2).  

 

 
 

Figure 2. The position of the model is determined by two phase 

coordinates: y, ψ - transverse deviation of the wheelset’s inertia center 

relative to the track centering and the wobble angle accordingly 
 

The last one is obtained as a differential consequence 

of the system (1): let us make a linear combination of 

corresponding parts of the system (1) (a factor of the first 

equation is

0

y
dr


 , a factor of the second equation is  ); 

the left side of the resulting expression is the time 

derivative of the expression (2) (integral of motion): 

2 2

0

consty
d r


+ =


 (2) 

 

3. ANALYSIS OF STRAIGHT LINE MOTION 

STABILITY OF THE WHEELSET WITH ELASTIC 

ELEMENTS IN AXLE-BOX SUSPENSION 

Let us make the analysis of straight line motion 

stability of the wheelset (Carter’s creep model) based on 

the dynamic equations of motion [6, 10, 25]. 

If only the linear creep is taken into account, the 

equations of perturbed motion have following form [10]: 

1

2 2
1

0

2 2 ( ) 0

2 2 ( ) 0

y

x

y
my k y k

V

y
J k b k d

V dr



 
 

+ + − =


+ + + =

 (3) 

 
 

Figure 3. Inertial frame of reference (rigidly connected to the frame) 

moves at a constant speed along a straight line coinciding with the track 

centerline 
 

We choose the coefficients of rigidity kx, ky of the 

elastic elements so that the subsystems (corresponding to 

the phase variables y,) have coinciding fundamental 

frequencies. 
22 2y x

k k b

m J
= =  

The unperturbed motion of the wheelset corresponds to 

zero values of the phase variables y = 0,  = 0. 

Let us represent the equations of the wheelset 

perturbed motion relative to the new variables p and q 

(which are slipping’s in the transverse and longitudinal 

directions), taking into account the nonlinear nature of the 

creep forces. 

2
1

2
0

1

0

22
1

2
0 0 1

2
1 ( / )

1

2
1 ( / )

f

f

y p V

k pV V
p y q

dr d mV k k P

V
y q

dr d

k d qV V
q p d

r r JV k k P











 
 



= +


 
= − − −   

+ 



= − +

  

= + −  −   
 + 


 (4) 

where, 
2 2 2( ) /p q V = +  is relative slip. 

The Lyapunov function in the form of a linear 

combination of its differential consequences [5] can be 

constructed for the system (4): each equation is multiplied 

by the corresponding variable with some coefficient in 

order to construct an expression that would be: а) the time 

derivative of some quadratic form of the system variables; 

b) quadratic form with constant terms. Based on this 

approach, the canonical quadratic form was obtained. 
2 2

2 2 2 2

0 0 0 0

1 1
[ ( ) ( ) ]

2

V V
V p q y d

r d r dr dr

   
  = + + − + −  (5) 

Its time derivative is non-positive due to the system (4) 
2 2

1

2
01

2
( )

1 ( / )f

k p q d
V

mr JV k k P




= − +

+
 

We obtain the expression for critical velocity from the 

condition of positive definiteness of Lyapunov function: 

0
kr

dr
V




=  (6) 
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While ,krV V y  the unperturbed motion is 

asymptotically stable, and the nonlinear nature of the creep 

forces does not place restrictions on the domain of attraction 

of the unperturbed motion; while krV V , the unperturbed 

motion is unstable. 

While τ=0, quadratic form (5) corresponds to the free 

wheelset; also, the structural instability occurs. 

Conditions of single-point contact place some 

restrictions on the variables’ disturbance values y,; 

therefore, it is necessary to evaluate the domain of 

attraction of the unperturbed motion, which would 

guarantee the absence of undesired contact between the 

wheel flange and the rail. 

Let us move to dimensionless variables. Since the 

expression of Lyapunov function has dimension of 

acceleration, we choose parameters V, d for 

nondimensionalization. Let R  be a maximum radius of 

the circle which is lying entirely in some given domain D, 

i.e., 
2 2 2y R+ = . Consider a four-dimensional ball of 

the same radius, i.e., 
2 2 2 2 2 .y p q R+ + + = Its 

projection into the plane ,y   does not leave the circle of 

the radius R . 

Consider the domain of attraction of the unperturbed 

motion given by the relation: 

2 2 2 2 2

0 0 0 0

( ) ( )p q y R
r r r r

   
   + + − + −   

It ensures that subsequent perturbations of variables do 

not leave the circle of radius R , i.e., the single point 

contact will be realized here 

(
0 0 0 0

min{ ,1, ( ), ( )}
r r r r

   
  = − − ). 

 

4. ANALYZING POSSIBILITY OF STABILIZATION 

THE MOTION OF THE WHEELSET WITH THE 

BALANCER OF FINAL INERTIA 

The linearized equations of the perturbed motion of the 

system are as follows: 

1

1
1 1 1 1 1 1

2
1

2 2 1 1
1 1 1 1

0

2 ( ) 0

2 ( ) 2 ( ) 0

2 ( ) 0

2 ( ) 2 ( ) 0

y

x

x

my k y y

y
m y k y y k

v

J k b

y
J k b k d

v dr



  

 
  

+ − =

+ − + − =

+ − =

+ − + + =

 

where, 1 1, , ,m J m J  is mass and central vertical moment 

of inertia of the balancer and the wheelset accordingly. For 

the case of 
2

2 2
1 1

1 1

; ;
y x

k k b
J m d J mb

m J
= = = = , we can 

use the previously constructed function as the basic 

Lyapunov function. The corresponding quadratic forms of 

the phase variables of the system are as follows: 

 

21 1
1 1 1 1 1 1 12

1 11

2
0 0

1 1 1 1
1

3 2
21 0 1
1 1 12

11

2

1 1 1 1 1 1
1

2
21 1

1 1 1 1 1
1 1 0 1

1

1

2 2 21
( ) 0

2
( )

2 2
0

2
( )

22 2
( )

2

y

x

x

y

k k k
y y y y y y y

v m v m vm v

dr k b dr

v J v

k d r k d
y

J vJ v

k b
y y y

J

kk d k d
y y y y

J v J r m

k
y

m v



    
 

 


   


 

+ − + − =

+ − +

+ + =

− + − +

+ + − − −

− 21
1 1 1

1

2
0

k

m
 + =

 

Supplement it with the second group of equations (for 

the balancer): 

1
1 1

2
0 0

1
1 1

1 1
1 1 1

2
( ) 0

2
( ) 0

22
( ) ( ) ( ) 0

y

x

yx

km
yy y y y

m v m v

Jdr k b dr

J v J v

kkm
y y y y y

m m m

   
 

    

+ − =

+ − =

− + − − − =

 

As a result, we obtain an auxiliary function as an 

alternating-sign quadratic form: 



2 2 2
1 1

1 1

2
2 2 20 0 0

1 1
1 1

1 1 1 1
1

21 1
( )

2

2
( )

2
( ) 2( )

y

x

km
V y y y y

m v v m v

Jdr dr k b dr

J v v J v

m
y y y y

m

   
  

   


= + + − +



+ + + − +

+ − + −

 

Its derivative has a derivative of constant signs due to 

the equations of perturbed motion (7). 

2 201 1 1
1 1

1 1 0

1
2 ( ) ( )

dry d y
V k

m v J v r

 





= − − + + 

 
 (7) 

The latter indicates the impossibility of stabilizing the 

wheelset using one inertial balancer. 

 

5. CONSTRUCTION OF THE QUADRATIC 

LYAPUNOV FUNCTION FOR LINEAR 

MECHANICAL SYSTEM 

The Lyapunov functions method can be effective while 

analyzing the stability of complex mechanical systems and 

searching for meaningful solutions for their passive 

stabilization; namely, it can be effective in terms of 

meaningful techniques for constructing quadratic 

Lyapunov functions, which using the concept of the 

mathematical structure of the mechanical system forces. 

Thomson-Tait-Chataev’s theorems [28, 29] on the 

influence of dissipative and gyroscopic forces on the 

stability of a linear conservative system were the first 

results in that process; the results of I. Metelitsyn were also 

important for the development of this direction [17, 13]. 
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Below are the results of [22, 24], in which a general 

meaningful approach to the choice of quadratic Lyapunov 

functions (which are presented in matrix form) is traced. In 

addition, their comparison will be useful for developing a 

strategy of searching for new function options as 

candidates for the role of quadratic Lyapunov function in 

matrix form. 

For a linear dynamic system of general form 

0Ax Dx Gx Fx Ex+ + + + =  (8) 

where, A, D, F are symmetric matrices of inertial, 

dissipative and potential forces; G and E are 

skew-symmetric matrices of gyroscopic and 

non-conservative positional forces, the following 

statement is true [22]. 

- Theorem. Let us suppose 
*{ }; { }; { }ij ij ijA a D A h d F l f= − = =  

are positive definite matrices ( 0, 0h l  ), then the zero 

solution to the system (8) is asymptotically stable. If 

,G E then the zero solution to system (8) is 

asymptotically stable while sufficiently large h> 0 or l> 0 

(regardless of gyroscopic and non-conservative forces). 

- Proof of the theorem. 

Let us choose Lyapunov function as following: 

1
[ 2 ( ) ]

2

T T TV x Ax x Ax x F D x= + + +  (9) 

By virtue of the system (8), its derivative is determined 

by the expression of: 

1
[ ( ) ]

2

T T T TV x Ax x Ax x Ax x F D x= + + + +  (10) 

After substituting the expression Ax  (8) in the 

expression (10) and combining the terms, we get a 

negative definite form: 

1
[ ( ) ]

2

T TV x D A x x Fx= − − −  (11) 

Positive definiteness of the form (9) follows directly 

from bringing it to the form of: 

1
[ 2 ( ) ]

2

T T T TV x Ax x Ax x Ax x F D A x= + + + + −  

The form (9) is positive definite when the form 

( )Tx F D A x+ −  is positive definite. 

If G E , then we have the following expression: 

1
[ ( ) ( ) ]

2

T T TV x D A x x E G x x Fx= − − − − −  (12) 

It can be shown that the form (12) is negative definite 

while sufficiently large h> 0 or l> 0 (necessary and 

sufficient conditions for the sign-definiteness of bilinear 

forms ( , ); ( , )V x x V x x are related to the condition of 

positive definiteness of the corresponding block matrix. 

Thus, the condition of positive definiteness of a bilinear 

form is determined by the condition of positive 

definiteness of a block matrix, which is generating a 

bilinear form ( , )V x x . 

10 0T

T

A A
F D A A A

A F D

− 
 + −    + 

 

 

The conditions of negative definiteness of a bilinear 

form ( , )V x x  coincide with the condition of positive 

definiteness of a block matrix, which is generating a 

bilinear form ( , )V x x . 

1
1/ 2( )

0 1/ 2( ) 1/ 2( ) 0
1/ 2( )

T

T

D A E G
D A E G F E G

E G F

−
− − 

 − − −   −  − 

Theorem is proved. 

Thus, the choice of quadratic Lyapunov function in the 

form (8) indicates only the possibility of stabilization of a 

general system by increasing dissipative or potential forces; 

the possibility of stabilization of an unstable potential 

system by gyroscopic forces is not covered by this case. 

This gap can be filled by using the most general structure 

of quadratic Lyapunov function, which is proposed in [24]. 

It is proposed to search the quadratic Lyapunov function in 

the following form 
T T TV x Fx x Gx x Hx= + +  (13) 

for a general system (corresponds to the cited work up to 

the designation of phase variables) 

0Mx Cx Kx+ + =  (14) 

where, F and G are symmetric matrices, and the matrix H 

can have an arbitrary structure. The derivative of quadratic 

Lyapunov function (13) has the following form by virtue 

of the system (14): 
1 1

1 1

2

2 2

T T T

T T

V x K M H x x GM C H x

x F GM K C M H x

− −

− −

 = − − − −
 

 − − −
 

 (15) 

As can be seen from the expression (15), the choice of 

a matrix 1 11
2

TF GM K C M H− −= +  can greatly 

simplify the analysis of sign-definiteness (provided that 

the expression on the right is a symmetric matrix). In fact, 

the structure of only two matrices (G and H) should be 

chosen. Although this fact is a poor consolation, since the 

considered quadratic Lyapunov function case (9) is 

“weakly” visible in this generalized form (it was necessary 

to choose G = M and H = M). 

Next, we consider two examples which illustrate the 

possibilities of using a generalized quadratic Lyapunov 

function of the form (13). 

Example 1. Gyroscopic stabilization of unstable 

potential system 

1 2 1

2 1 2

1 0 0
0; ; ;

0 1 0

0
; 0

0

g
x gx kx M C

g

k
K x gx kx

k

−   
− − = = =   

   

− 
= + − = 

− 

 

We choose G = M and H = C, then:  

1 0

0

T g k
K M H

g k

−  
=  

−  
 

2
1

2

/ 2 0
1

2
0 / 2

T k g
F K C M C

k g

−
 − +

= + =  
 − + 

 

T T TV x Fx x Gx x Hx= + + ; 0V =  
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Condition of the positive definiteness of the quadratic 

Lyapunov function (14) as 
2 / 4g k . 

Example 2. Sufficient instability of mechanical system 

in the presence of potential and non-conservative 

positional forces 

1 1 1 2

1

2

2 1 2 2

0

1 0
;

0 1

0

x k x еx

k e
M K

e k

x ex k x

+ − =

−  
= =   
   

+ + =

 (16) 

Let us use ;TV x Hx= ,TH H= − as a quadratic 

Lyapunov functions, then:  

1 ( )
2

T T T T TV x K H x x K H H K x= − = − +  

Statement: If there exists a skew-symmetric matrix H 

such that the matrix 
TK H  has a sign-definite symmetric 

part, then the zero solution to the system (16) is unstable. 

For example, the condition of positive definiteness 

0T TK H H K+ , while:  

1 ( )
2

TH K K= −

2
2 1

1 22
2 1

2 ( )
0 2

( ) 2

e e k k
e k k

e k k e

−
   −

−
 

(agreement 1 2k k is adopted). 

 

6. CONCLUSION 

The procedure of constructing a quadratic Lyapunov 

function was carried out for a certain relation between the 

stiffness characteristics parameters of axle-box suspension 

of the wheelset model with a conical profile of the rolling 

surface. Quadratic Lyapunov function provides the 

necessary and sufficient conditions for the stability of the 

unperturbed straight-line motion of the wheelset. 

Moreover, the nonlinear nature of the creep forces does not 

impose restrictions on the domain of attraction. In addition, 

the critical speed does not depend on the value of the creep 

coefficient (it is determined by the given stiffness 

characteristic of the axle-box suspension and geometric 

parameters of wheelset, including conical parameter). 

The results of analysis regarding the force structure 

influence on the stability of linear mechanical systems of a 

general form are presented, which make it possible to use 

the possibilities of structural changes in order to passively 

stabilize the hypothetical model of the wheel module. New 

options of quadratic Lyapunov functions for model 

mechanical systems are proposed. 

 

NOMENCLATURES 

1. Symbols / Parameters 

A: matrix of inertia forces 

D: matrix of dissipation forces 

G: matrix of gyroscopic forces 

F: matrix of potential forces 

E: matrix of non - conservative forces 

V: scalar Lyapunov function 

h, l: constants > 0 

m1: mass of the wheel pair 

J1: moment of inertia of the wheel pair 

v: longitudinal velocity 

k1: creep ratio 

kx: stiffness coefficient of axle box in longitudinal direction 

ky: stiffness coefficient of axle box in transverse direction 

y: lateral bearing of the wheel pair 

r0: radius of the rolling surface 

ψ: yaw angle of the frame 

ψ1: yaw angle of the wheel pair 

γ: conicity of the rolling surface 

 

REFERENCES 

[1] A. Lau, I. Hoff, "Simulation of Train-Turnout Coupled 

Dynamics Using a Multibody Simulation Software", 

Modelling and Simulation in Engineering, Vol. 2018, 

Article ID 8578272, p. 10, 2018.  

[2] S.A. Agafonov, “Stability and Motion Stabilization of 

Nonconservative Mechanical Systems”, Journal of 

Mathematical Sciences, Vol. 112, pp. 4419–4497, 2002. 

[3] A.A. Agafonov, “On the stability of nonconservative 

systems”, Vestn. MGU Ser. Mat., Mekh., No. 4, pp. 87-90, 

1972. 

[4] M. Ahmadian, D.J. Inman, “On the Stability of General 

Dynamic Systems Using a Liapunov's Direct Method 

Approach”, Computers & Structures, Vol. 20, pp. 287-292, 

1985. 

[5] A.V. Banshchikov, L.A. Burlakova, V.D. Irtegov, T.N. 

Titorenko, “Symbolic computations in modeling and 

qualitative analysis of dynamic systems”, Vychislitelnyye 

tekhnologii, Vol. 19, No. 6, pp. 3-18, 2014. 

[6] F.W. Carter, “On the stability of running of 

locomotives”, Proc. R. Soc., A121, pp. 585-611, 1928. 

[7] A.D. de Pater, “The equations of motion of railway 

wheelset moving over tangent track”, LTM Report 985, 

Delft University of Technology, 1992. 

[8] D. Hao, Z. Jing, W. Liang, D. Huanyun, “Analysis of 

the Gyroscopic Stability of the Wheelset. Shock and 

Vibration”, Hindawi Publishing Corporation, Vol. 1, 7 p. 

2014. 

[9] V.I. Goncharenko, “Stabilization of motion of an 

unstable linear mechanical system”, Prikl. Mekh., Vol. 26, 

No. 4, pp. 79-85, 1990. 

[10] S.E. Iwnicki, “Handbook of Railway Vehicle 

Dynamics”, CRC Press, Taylor & Francis Group, p. 552, 

Boca Raton, London, New York, 2006. 

[11] V. Karapetyan, “On the stability of nonconservative 

systems”, Vestn. MGU, Ser. Mat. Mekh., No. 4, pp. 

109-113, 1975. 

[12] O.N. Kirillov, “Nonconservative Stability Problems 

of Modern Physics”, Vol. 14, 528 p., De Gruyter, Berlin, 

Germany, March, 2021. 

[13] W. Kliem, A. P. Seyranian, “Metelitsyn's inequality 

and stability criteria for mechanical systems”, Journal of 

Applied Mathematics and Mechanics, Vol. 68, No. 2, pp. 

199-205, 2004. 

[14]  H.G. Kwatny, L.Y. Bahar, A.K. Pasrija, 

“Energy-like Lyapunov functions for power system 

stability analysis”, The 23rd IEEE Conference on Decision 



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 49, Vol. 13, No. 4, Dec. 2021 
 

261 

and Control, Vol. 32, No. 11, pp. 1140-1149, 1985. 

[15] V.M. Lakhadanov, “The effect of the structure of 

forces on the stability of motion”, Prikl. Mat. Mekh., Vol. 

38, No. 2, pp. 246-253, 1974. 

[16] J. Li, “On the stability of dissipative mechanical 

systems with circulatory forces”, J. Appl. Maths. & Phys. 

(ZAMP) No. 48, pp. 161-164, 1997. 

[17] I.I. Metelitsyn, “The problem of gyroscopic 

stabilization”, Reports of the USSR Academy of Sciences, 

Vol. 86, No. 1, pp. 31-34, 1952. 

[18] K. Popp, W. Schiehlen, “Ground vehicle dynamics”, 

Springer-Verlag, 348 p., Berlin, Heidelberg, 2010. 

[19] H. True, “Dynamics of a rolling wheelset”, App. 

Mech. Rev., pp. 438-444, 1993. 

[20] H. True, “On the critical speed of high-speed railway 

vehicles”, Noise and Vibration on High-Speed Railways, 

FEUP Porto Portugal, pp. 149-166, 2008. 

[21] U. von Wagner, D. Hochlenert, W. Martens, 

“Attractors of Nonlinear Wheelset Models”, The 8th 

International Conference on Structural Dynamics, 

EURODYN 2011, Leuven, Belgium, pp. 699-704, 4-6 

July 2011. 

[22] V.G. Verbitskii, “The effect of the structure of forces 

on the stability of a linear system”, Prikl. Mekh., Vol. 18, 

No. 12, pp. 119-121, 1982. 

[23] J.A. Walker, “A note on stabilizing damping 

configurations for linear nonconservative systems”, Int. J. 

Solids Struct., Vol. 9, No. 12, pp. 1543-1545, 1973. 

[24] J.A. Walker, “On the Stability of Linear Discrete 

Dynamic Systems”, ASME Transact., Ser. E, J. Appl. 

Mech. Vol. 37, No. 2, pp. 271-275, 1970. 

[25] A.H. Wickens, “The dynamics of railway vehicles – 

From Stephenson to Carter”, Proc. Instn. Mech. Engrs., 

Vol. 212 (Part F), pp. 209-217, 1999. 

[26] A.H. Wickens, “The dynamics of railway vehicles on 

straight track: Fundamental considerations of lateral 

stability”, Proc. Instn. Mech. Engrs., Vol. 180 (Part 3F), pp. 

29-44, p. 150, 1965-1966. 

[27] H. Yoshino, T. Hosoya, H. Yoshino, S. Lin, Y. Suda, 

“Theoretical and experimental analyses on stabilization of 

hunting motion by utilizing the traction motor as a passive 

gyroscopic damper”, Proceedings of the Institution of 

Mechanical Engineers, Part F: Journal of Rail and Rapid 

Transit, Vol. 229, No. 4, pp. 395-401, 2015. 

[28] E.E. Zajac, “The Kelvin-Tait-Chetaev theorem and 

extensions,” J. Astronaut Sci., Vol. 11, No. 2, pp. 46-49, 

1964. 

[29] J.A Ramos Hernanz, J.J. Campayo, J. Larranaga, E. 

Zulueta, O. Barambones, J. Motrico, U. Gamiz Fernandez, 

I. Zamora, “Two Photovoltaic Cell Simulation Models in 

Matlab/Simulink”, International Journal on Technical and 

Physical Problems of Engineering (IJTPE), Issue 10, Vol. 

4, No. 1, pp. 45-51, March 2012. 

[30] A.B. Perlman, C.L. Dym, “A Note on the Lyapunov 

Stability Analysis of a Linear Railway Wheelset”, Vehicle 

Systems Dynamics, Vol. 9, No. 3, pp. 61-68, Mar. 1980. 

[31] L.D. Clive, “Stability Theory and its Applications to 

Structural Mechanics”, Noordhoff International, 

Publishing Company, Leyden, Netherlands, 1974. 

(Republished by Dover Publications, New York, 2002). 

[32] K. Knothe, F. Boehm, History of Stability of Rail- 

way and Road Vehicles, Vehicle System Dynamics, Vol. 

31, No. 5-6, pp. 283-323,1999. 

[33] J. Guo, H. Shi, R. Luo, J. Zeng, “Bifurcation 

Analysis of a Railway Wheelset with Nonlinear 

Wheel-Rail Contact,” Nonlinear Dynamics, Vol. 104, pp. 

989-1005, 2021. 

 

BIOGRAPHIES 

 

Volodymyr G. Verbitskii was born in 

Ukraine, in 1953. He is a Professor, 

Doctor of Physico-Mathematical Sciences, 

and Head at the chair of “Software for 

automated systems”, Engineering Institute 

of Zaporizhia National University, 

Zaporizhzhia, Ukraine. His education was 

in Lomonosov Moscow State University, Moscow, Russia. 

He received the Doctor of Physico-Mathematical Sciences 

degree (1999) S.P. Timoshenko Institute of Mechanics 

(Kyiv, Ukraine). He is author of more than 150 

publications in national and international journals and 

author of books on the dynamics of wheeled vehicles and 

their stability. The basic scientific fields of his research 

interests are modeling of transport systems, dynamics of 

wheeled vehicles, application of the theory stability and 

bifurcation to the problems of the dynamics wheeled 

vehicles.  

  

Anatoliy I. Bezverkhyi was born in 

Ukraine in 1949. He is an associate 

professor of the Department of Software 

for Automated Systems of the 

Engineering Educational and Scientific 

Institute of Zaporizhzhia National 

University, Zaporizhzhia, Ukraine. He 

graduated from the Faculty of Mechanics and Mathematics 

of Dnipropetrovsk State University, Dnipro, Ukraine. 

Author of more than 30 publications in national and 

international journals, author of books on the dynamics of 

wheeled vehicles and their stability. The main scientific 

directions of scientific interests are modeling of 

mechanical systems, dynamics of wheeled vehicles. 

 

Yuliia O. Lymarenko was born in 

Ukraine in 1978. She is an associate 

professor of software for automated 

systems of the Engineering Educational 

and Scientific Institute of Zaporizhia 

National University, Zaporizhia, Ukraine. 

He graduated from the Faculty of 

Mathematics of Zaporizhia State University, Zaporizhia, 

Ukraine. Author of more than 20 publications in national 

and international journals, author of books on the 

dynamics of wheeled vehicles and their stability. The main 

scientific directions of scientific interests are modeling of 

mechanical systems, algorithms and programming. 

 



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 49, Vol. 13, No. 4, Dec. 2021 
 

262 

Vasyl I. Popivschyi was born in Ukraine 

in 1948. He is an associate professor of 

the Department of Software for 

Automated Systems of the Engineering 

Educational and Scientific Institute of 

Zaporizhzhia National University, 

Zaporizhzhia, Ukraine. He graduated 

from the Kharkiv Institute of Radio Electronics, specialty 

"Electronic computers", Kharkiv, Ukraine. Author of more 

than 30 publications in national and international journals, 

author of books on the dynamics of wheeled vehicles and 

their stability. The main scientific directions of scientific 

interests are modeling of mechanical systems, dynamics of 

wheeled vehicles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Valeriy I. Zayats was born in Ukraine in 

1953. He is an associate professor of the 

Department of Software for Automated 

Systems of the Engineering Educational 

and Scientific Institute of Zaporizhzhia 

National University, Zaporizhzhia, 

Ukraine. He graduated from the Faculty 

of Mechanics and Mathematics of Dnipropetrovsk State 

University, Dnipro, Ukraine. Author of more than 30 

publications in national and international journals, author 

of books on the dynamics of wheeled vehicles and their 

stability. The main scientific directions of scientific 

interests are modeling of mechanical systems, dynamics of 

wheeled vehicles. 

 
 

 


