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Abstract- Shell constructions are widely used in modern 

technology. Combining law weight with high strength, 

shells are the most common structural elements. Thin-

walled shell type elements are used in engineering 

structures, in transport and chemical engineering, in 

industrial and civil construction, in aviation, missile and 

ship constructions. Among all types of shells used by 

human of greatest interest are cylindrical shells in which 

simplicity, compactness and high technology are 

successfully combined.  

Circular cylindrical shells are the elements in 

constructions of aircrafts and engines, underwater and 

surface vehicles, underground tunnels and tanks. When 

considering vibrational processes of cylindrical shells, the 

choice of a suitable model is principal. The first aspect is 

the choice of the type of vibration: nonlinear or linear 

ones. The second important point is the answer to the 

question if the shell may be considered as infinite, or it 

has a finite length, that immediately complicates the 

problem in connection with the need to satisfy boundary 

conditions at the ends (or at the end if the shell is 

considered as semi-infinite). The third aspect in the 

choice of the model is the establishment of possibility of 

using theories of thin shells which is allowed when the 

ratio of the thickness to the median radius is less than 

0.0.5. Otherwise, we have to use mathematical apparatus 

of three-dimensional theory of elasticity. 

In great majority of classic fundamental studies, 

physical and mathematical characteristics of the material 

were considered constant, i.e., homogeneous shells were 

considered. At the same time, the research of the stress-

strain state of circular cylindrical shells inhomogeneous 

in thickness under dynamical actions are extremely 

important from practical point of view if we take into 

attention that such shells are used as protective structures 

of AES. When designing protective shells for AES it is 

necessary to take into account various emergency 

situations including action of air shock, as well as sudden 

increase of pressure, radiation and temperature. At the 

same time, in the rated models it is necessary to take into 

account change of elastic and inertial characteristics in 

the thickness of the construction, and resulting dynamical 

reactions may turn out to be defining.  

However, in normative documents there are no 

recommendations on calculation of shells for the 

specified actions. Thus, under the conditions of increased 

safety requirements for AES development of the 

technique for calculating protective shells for the above 

noted special dynamical actions is a very serious 

problem. In de modern conditions of exploitation of 

special responsible structures which include protective 

shells of reactor compartment of nuclear powers, 

energetic and chemical reactors, constructions of 

reservoirs, chimney stack, technological furnaces along 

with force (static, dynamic) loadings are also affected by 

various physical, mechanical and chemical fields. So, 

action of radiation exposure, aggressive media, intense 

temperature and high pressure lead to change in physical 

and strength characteristics of the material of such 

constructions, i.e. they are induced heterogeneity factors. 

In this regard, it becomes necessary to determine 

dynamical characteristics and analysis of stress-strain 

state of shells inhomogeneous in thickness with altered 

physical and mechanical characteristics of the material. 

At the same time, there is still no established calculation 

methodology for analysis of inhomogeneous cylindrical 

shells for dynamical action. The issues related to 

calculation of multilayer shells under nonstationary 

loadings also were not enough studied. 

In the present paper we study vibrations of a viscous 

fluid-filled orthographical shell stiffened with cross 

system of ribs. 

 

Keywords: Vibration, Stiffened Shell, Orthotropic 

Cylindrical Shell, Viscous Fluid. 

 

1. INTRODUCTION 

The Azerbaijan is an oil country. More than 80 

percent of the oil produced is extracted from the sea 

water area and is transported to the show via pipelines. 

Extraction of oil from the sea is always accompanied by 

serious difficulties, because storm and hurricanes that 

occur at sea at different times of the year always cause 

complications on stationary platforms built for oil 

extraction.  
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The parts of stationary platforms that require regular 

attention and break down quickly, are the pipes where the 

oil collected from the wells is connected to the subsea 

pipeline (sometimes 8-10 oil wells are located on one 

stationary platform in Figure 1).  

 

 
 

Figure 1. Stationary platform in the sunny equatorial of the Caspian Sea 

 

During strong storms as well as under the influence of 

underwater current, the cracks appear at the junction of 

the subsea pipeline with the platform and at the junction 

of pipelines from the oil well due to internal pressure 

(there is a pressure of about 100 atmosphere) resulting in 

major accidents. One such incident occurred in December 

4, 2015 in the Gunashli water area of the Caspian Sea 

(140 km from the shore, the depth of the sea was 130 m 

and the pressure in the gas pipeline was 110 atm) in one 

of the off shore stationary platforms (well No. 10). The 

accident resulted in numerous causalities and it took 

several months to extinguish the fire (Figure 2). 

 

 
 

Figure 2. Stationary platform in case of fire 

 

Engineers and scientists were invited to restore the 

damaged (torn along the axis) horizontal and inclined 

distribution pipelines (Figures 3 and 4) and the 

restoration was completed with scientific research.  

 

 
 

Figure 3. Damaged horizontal distribution pipe 

 
 

Figure 4. Damaged inclined distribution pipe 

 

The present paper was devoted to the elimination of 

the accident. The structural elements damaged as a result 

of the accident were restored and strengthened (Figures 5 

and 6).      

   

 
 

Figure 5. Restored horizontal distribution pipe 

 

 
 

Figure 6. Restored inclined distribution pipe 

 

Equations describing deformation waves by means of 

asymptotic methods of solution of a coupled problem of 

hydroelasticity that includes equations of dynamics of 

two co-axial geometrically and physically nonlinear 

elastic shells taking into account energy dissipation and 

equations of dynamics of viscous incompressible fluid 

between cylindrical shells, with appropriate boundary 

conditions were obtained in [1].  
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Two cases of properties of the shell material are 

considered: with structural damping and viscoelastic 

behavior. It is shown that in both cases one and the same 

equations generalizing the known Kortewag-de Vries-

Burgers modified equation are obtained. 

Existence of fluid between co-axial shells leads to 

appearance of deformation wave not only in external 

shell, but also in the internal one, which at initial moment 

of deformation were equal to zero. As a result, in the 

external and internal shells it is established a deformation 

wave of constant amplitude and propagation speed with a 

local splash on leading edge, that corresponds to the 

“solitary wave” type solution that is not described 

analytically. This construction can be interpreted as a 

three-layer package whose filler is fluid. 

   The features of vibrations of a cylindrical shell 

inhomogeneous in its reinforced thickness and being in 

dynamic contact with moving liquid were studied in [2, 

3]. When solving the problem by the Hamilton-

Ostrogradsky variational principle, a system of equations 

for studying free vibrations of an inhomogeneous 

cylindrical shell being in dynamic contact with moving 

liquid and reinforced with rods, was structured. 

    Note that vibrations of a homogeneous cylindrical shell 

stiffened with anisotropic bars, and ideal liquid were 

studied in [4]. In the paper [5], free vibrations of an 

orthotropic, laterally stiffened, ideal fluid-filled 

cylindrical shell inhomogeneous in thickness and in 

circumferential direction is studied. Using the 

Ostrogrdasky-Hamilton variational principle, the systems 

of equations of the motion of an orthotropic, ideal fluid 

filled cylindrical shell stiffened in thickness and 

circumference, are constructed.  

In order to calculate inhomogeneity of the shell 

material in thickness and circumference, it is accepted 

that the young modulus and the density of the material of 

the shell are the functions of normal and circumferential 

coordinates. Frequency equations are constructed and free 

vibrations of an orthotropic, ideal fluid-filled, laterally 

stiffened cylindrical shell inhomogeneous in thickness 

and in circumference are numerically implemented. The 

characteristically dependence curves were constructed. In 

the paper [6], a problem of parametric vibration of an 

external elastic medium-contacting, longitudinally 

stiffened orthotropic cylindrical shell under the action of 

inner pressure in the geometrically nonlinear statement 

was solved by means of the variational principle.  

 

2. PROBLEM STATEMENT 

We get expressions of motion and boundary 

conditions for a orthotropic cylindrical shell filled with 

viscous liquid based on the Ostrogradsky-Hamilton 

principle. Since the system under consideration consists 

of cylindrical circular shells with longitudinal stiffened 

elements and viscous fluid (Figure 7a, 7b, 7c), we can 

write the total energy of the system in the form:  

1 2

1 1

k k

i ji j
G K H H A

= =
 = + + + +   (1) 

where, G is a potential, K is a kinetic energy of the 

cylindrical shell, 1

1

k

jj
H

= is total energy of longitudinal, 

2

1

k

jj
H

= of transversal ribs used in stiffening, А is a 

work done by the external forces and takes into account 

influence of viscous fluid when the points of the 

cylindrical shell are displaced, 1k  is the amount of 

longitudinal ribs, 1k  is the amount of transverse ribs. The 

formulas to calculate these quantities are in the papers [3, 

7].           

 

 

 

 
 

Figures 7. (a), (b), (c) - Construction under the action of radial load in 

dynamic interaction with viscous fluid 

 

Intensity of load 1, ,x y zq q q  acting on the shell as 

viewed from viscous fluid is determined from the Navier-

Stocks linearized equation [8]. To the expressions (1) we 

add contact and boundary conditions. 

Considering that the edges of the shell are highly 

connected, i.e., for 0x =  and x l=  

0; 0; 0; 0x xN M w = = = =  (2) 

where, , , ,x xN M w  are longitudinal forces, bending 

moment, circumferential and normal components of 

displacements of shell points, respectively   

At the points of the internal surface of the shell there 

will be 
2

h
r R
 

= − 
 

.             

,  ,  x r

u w

t t t



  

  
= = =
  

 (3)  

1, ,x rx r zq q q p  = − = − = −  (4) 

where, ( ), ,x r      is the vector of velocity of an 

arbitrary point of the fluid, p  is pressure at arbitrary 
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point of the fluid, , ,x yq q
 1zq  are forces acting on the 

shell as viewed from viscous fluid ,rx r   are viscous 

forces [1]. 

The equation of motion of a viscous fluid-contacting, 

stiffened construction on the basis of Ostrogradsky-

Hamilton principle of stationarity of actions: 

0W =  (5) 

where, 
t

t
W dt




=   is Hamilton’s action, t   and t   are 

the taken arbitrary moments of time [10].   

   

3. PROBLEM SOLUTION 
 

Let’s take non-linear parametric vibrations of a 

cylindrical shell under the influence of radial force

2 0 1 1sinzq q q t= + , where, 0q  is a principal load, 1q  is 

the amplitude of the load, 1  is frequency of pressure 

change in the viscous fluid-filled shell.  

For describing the motion of fluid, we use the Navier-

Stocks linearized equation for viscous incompressible 

fluid [8]: 

21
grad graddiv

3
m p

t


   


= − + + 


 (6)                         

We represent the solution of the Navier-Stocks 

equation by a scalar potential
 


 
and vector potential

 


 
in the form

  
grad rot  = +  (7)

 
Substituting (7) in (6), we obtain: 

( )grad rot
grad

1
graddiv

3

m p
t

 


   

 +
= − +



+ + 

 (8) 

From (7) we easily get: 

div ; graddiv grad   =  =   

Using the vector identity rotrot graddiv = −   

we can write: 

graddiv rotrot grad rotrot     = = − =  −  

Using (7), we find: 

( )

( )

rotrot rotrot grad rot

rotrotgrad rot rotrot rot

  

  

= + =

= + = − 
 

graddiv grad( ). =   

Substituting these relations in the equation of motion 

(8), we find: 

( )
4

grad grad grad
3

rot rot 0

m

m

p
t

t

   

   


+ −  −




−  + =



 

or 

4
grad

3

rot 0

m

m

p
t

t


  


  

 
+ −  + 

 

 
+ −  + = 

 

 

This equation will be satisfied if we assume. 

4
0

3
m p

t


  


+ −  =


 (9) 

0m
t


  


−  + =


 (10)                                          

Thus, we can get a particular solution of Equation (6) 

based on particular solution (9) and (10). It is seen from 

(9) and (10) that for finding the potentials   and    one 

needs to know pressure p  and density m  of the fluid. 

We illustrate what has been said on an example when 

fluid is viscous Newtonian. In this case to the system of 

linearized Navier-Stocks Equations (6) that contains five 

unknowns, three velocity components , ,x r    , pressure 

p  and density m  we add a discontinuity equation 

div 0m
t


 


+ =


 and a formula of the form 

2
*

p
a




=


 

closing the system of equations. In the monograph [1] 

after some transformations the following linearized wave 

equation is obtained: 

2
2

2 2 2
* *

1 4

3 m

p p
p

ta t a





  
=  +    

 (11) 

The solution of the equation (11) is of the form 

0 0( ( ) ( )) exp ( )n np p J r c Y r i kx n t   = + + +  (12) 

where, 
2

2

2
* 2

*

, ,
4

1
3

n n

m

k J Y

a i
a








= −
 
+  

 

 

are nth order Bessel functions parameters, n  is the 

number of waves along circumference, k  is a wave 

number or a constant propagated phase, ,  
m

k m
L


=  is 

the amount of longitudinal waves in the shell, the 

quantity  characterizes cyclic frequency of the wave, 

  is dynamical viscosity factor, m  is density of the 

fluid in unperturbed state, *a  is velocity of propagation 

of small perturbations in fluid, 0 0,p c  are constants.  

 Considering the function p to be bounded for 0r = , 

we find 0 0c = , and then finally 

( )0 ( ) expnp p J r i kx n t  = + +  (13)  

From (9), for finding   we get the equation 

( )0

3
exp ( )

4

m
np J r i kx n t

t

 
   




 − = + +


 (14) 

The solution of the homogeneous Equation (14) is of 

the form: 

( )1 2 ( )n nC I kr C K kr = +  

where, 
2 3

, ( ), ( )
4

m
n n

i
k k I kr K kr




= +  are order nth 

order Bessel functions of first and second kind, 

respectively, 1 2,C C  are constants. By means of the 

method of variation constants, we can write the solution 

of the equation in the form  
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0 1( ) ( ) ( )nr p f r I kr = +  (15) 

where, 

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

n n n

R

n n nr

r I kr K kr I kr K kr

f r I kr J K k d   −

  = −

= −  +
 

( ) ( ) ( )1

0
( )

r

n n nK kr J I k d   −+   

The equation with respect to the components of the 

vector ( )1 2 3, ,     has the form 

m

t

 





 =


 

or  
2

2

2

1
( ) ( ) ( ) 0m

i i i

i n
r r k r

r r


  



 
 + − + + =  

 
 (16) 

The solution of the Equation (16) corresponding to 

the problem under consideration is of the form: 

1 2 2 3( ); ( )n nJ qr J qr   = =  

3 4 ( )nJ qr =  (17) 

where, 
2 i

q k



= + . 

Using (6), (11) and (13), for the velocity vector 

components we obtain: 



2
*

0 1

4 3

( ) ( )

( ) ( ) exp ( )

x n

ma

n n

k
v p f r ikJ kr

inJ qr qJ qr i kx n t






   


= − + +



+ −  + +

 (18) 



2
*

0 1

4 3

( ) ( )

( ) ( ) exp ( )

n

ma

n n

n
v p f r inJ kr

ikJ qr qJ qr i kx n t








   


= − + +



+ −  + +

 



2
*

0 1

3 2

( ) ( )

( ) ( ) exp ( )

r n

ma

n n

i
v p f r kJ kr

ikJ qr inJ qr i kx n t






   


  = + +



+ −  + +

 

By means of the viscosity force formula [8], we find:  

( )


2
*

2
0 1

2
2 3

4

2
( ) 2 ( )

( ) ( ) ( )

( ) exp ( )

n

ma

n n n

n

k
f r p ik J kr

nkJ qr k J qr J qr

inqJ qr i kx n t


 



 

  


  − + +



+ − − +


+ + +

 

( )


0 12
*

2 2
2 3

4

2 2
( ) ( )

( ) ( ) ( )

( ) exp ( )

r n

m

n n n

n

n ink
f r p J kr

RR a

n J qr q J qr nkJ qr

ikqJ qr i kx n t




  



 

  


 = − + +



+ − + − +

+ + +

 (19) 

0 ( ) exp ( )rr np J r i kx n t   = + +  

Using contact conditions (4) and expressions (19), we 

find the forces , ,x yq q  1zq  acting on the shell as viewed 

from viscous fluid  



2
0 12

*

2
2 3

4

2
( ) 2 ( )

( ) ( ( ) ( )

( ) exp ( )

x n

m

n n n

n

k
q f R p ik J kR

a

nkJ qR k J qR J qR

inqJ qR i kx n t


 



 

  


 = − + +



+ − − +


+ + +

 

1 0 ( ) exp ( )z nq p J R i kx n t  = + +  (20) 

( )


0 12
*

2 2
2

3 4

2 2
( ) ( )

( ) ( )

( ) ( ) exp ( )

y n

m

n n

n n

n ink
q f R p J kR

RR a

n J qR q J qR

nkJ qR ikqJ qR i kx n t


 





   


 = − + +



+ − −

− +  + +

 

We will look for the displacement of the shell points 

in the form: 



0 12
*

4 3

( ) ( )

( ) ( ) exp ( )

n

m

n n

i k
u p f R ikJ kR

a

inJ qR qJ qR i kx n t




 

   


= − − + +



+ −  + +

 

0 12
*

4 2

( ) ( )

( ) ( ) exp ( )

n

m

n n

i n
p f R inJ kR

a

ikJ qR qJ qR i kx n t


 

 

   

 
= − − + + 

  

+ −  + +

 



0 12
*

3 2

( ) ( )

( ) ( ) exp ( )

n

m

n n

i i
w p f R kJ kR

a

ikJ qR inJ qR i kx n t




 

   


 = − + +



+ −  + +

 (21) 

Under such solutions, conditions (3) are fulfilled 

automatically. Using formula (21) we can calculate the 

work А done by the external fords and taking into account 

the influence of viscous fluid when the points of 

cylindrical shells are displaced, and total energy of 

longitudinal and transverse ribs. Let us consider the 

solution of the problem in the first approximation and 

with respect to coordinate and time functions. 

Considering (21) in functional   and in respect that 

1 0,x = 2 1, 0,x l y= = 2 2 , 0,y t = = t



 = . 

Let’s integrate these expressions with respect to ,x y ,

t  and get the function W  with the quantities 

1 2 3 4 0, , , , p    .  

The fixed magnitude of the expression is defined by the 

next nonlinear system of equations: 

0

0; 0
i

W W

p

 
= =

 
 (i = 1, 2, 3, 4) (22) 

 

4. CONCLUSIONS 

The system (22) was solved for the following values 

of input data [9]. 

The results of calculations are on Figure 8 and 9.  The 

dependences of ratios of nonlinear frequency to the linear 

one on deflection in the case of vibrations of a fluid- shell 

under different values of ratios
 1 2/E E  of the

 
shell 

material and for the fixed values of
 iE

 
are given in 

Figure 8. 
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9
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3

4 4 2 2

0.355;

5.75mm ,  0.5305 10 ;
2

19.9mm ;  0.26 10 Nsec /m

kpj

j

xj j

J
F

R h

J





−= = 

= = 

 

 

 
 

Figure 8. Dependence of frequency on deflection 

 

It is seen that with
 
increasing the ratios

 1 2/E E  and 

shell deflection, nonlinear frequencies of
 
the vibrations of 

the system increase. The dependences of ratios of 

nonlinear part to the linear one on the number of 

longitudinal bars are given in Figure 9. It’s obviously 

from the graph that rising the number of longitudinal ribs, 

at first nonlinear frequencies of vibrations increase, and 

then attaining maximum they began to decrease. It is 

explained by the fact that at first by increasing the 

number of longitudinal ribs the rigidity of the system 

increases, and with a further increase in the number of 

longitudinal ribs, the inertia prevails over rigidity. 

1. With the increase in the ratio of the modulus of the 

elasticity of the material of the shell, the frequencies of 

nonlinear vibrations of the system increase. 

2. With the increase of the flexure of the shell, the 

frequencies of nonlinear vibrations of the system 

increase. 

3. With an increase in the number of longitudinal ribs, at 

first the nonlinear vibration frequencies increase, and 

then, reaching a maximum, they begin to decrease. 

 

 
 

Figure 9. Dependence of frequency on the number of longitudinal bars 
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