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Abstract- A new discrete N-DOF (degree of freedom) 

model is utilized for the first time to analyses free 

vibrations of tapered beams with multiple transverse 

cracks resting on elastic Winkler foundations. The 

description of the mechanical system considered is 

detailed.  After construction of the new mass and rigidity 

tensors, including the crack and the Winkler foundation 

contributions, Lagrange’s equations are used and the 

dimensionless frequencies and associated mode shapes are 

determined using different boundary conditions and 

shapes of the tapered beams. The comparisons of the 

results obtained here in a systematic and a unified manner 

with those published in previous works ensure the 

reliability and applicability of the present model. 

 

Keywords: Free Vibration, N-DOF, Crack, Tapered 

Beam, Winkler Foundation. 

 

1. INTRODUCTION                                                                         

Cracks in structures used in engineering, such as bars, 

beams, plates, shells..., can have a considerable influence 

on their dynamical behavior, and if left undealt with, may 

lead to fractures and other catastrophic defects [1]. 

Detection of crack initiation can be achieved by analyzing 

the changes induced in dynamic response of these 

structures. 

Several articles examined beam, plate and shell 

structures with and without racks [2, 3, 4, 5] etc. Also, 

beams resting on various types of foundations have been 

considered.  Some of them are discussed below. 

S.E. Motaghian, et al. [6] developed an analytical 

method using Fourier combination to calculate the 

frequencies of a tapered beam under a Winkler variable 

foundation.  A. Ghannadiasl and S. Khodapanah Ajirlou 

[7] used Green's dynamic functions to solve the equation 

governing the vibration of a cracked uniform beam.  [8] 

Yijiang Ma and al proposed a theoretical method to 

determine the vibration frequencies of a particular class of 

tapered beams containing multiple cracks. 

The above-mentioned articles only apply to either a 

tapered beam under a foundation or to cracked tapered 

beams with specific end conditions.  The case of a cracked 

tapered beam supported on a foundation is not treated. 

The objective of this paper is to examine free vibrations 

of a cracked tapered beam supported by a variable elastic 

Winkler foundation using the discrete model used by 

Moukhliss in [9] to treat uncracked tapered beams. The 

definition of the relative flexibility considers the crack as 

a spiral spring whose stiffness depends on its depth and 

position. The Winkler elasticity is described by a 

distribution of linear vertical springs, while the beam 

mentioned is presented in the present discrete model by 

N+1 identical bars of equal lengths and negligible mass. 

The total beam mass is divided into N point masses, 

expressing the beam inertia, located at the ends of the bars. 

The mass distribution is defined by the law of variation of 

the tapered beam cross section area along the beam length.  

The bending stiffness of the beam is presented by N+2-n 

spiral springs, the elasticity of which varies with their 

location due to the non-uniformity of the beam, and as 

previously stated, each crack is similar to a spiral spring, 

the stiffness of which varies with the crack depth and 

location.  

 After the definition of the N-DOF system mass tensor 
a
ijm , beam rigidity tensor s

ijk  (taking into account the 

presence of the crack) and foundation rigidity tensor f
ijk , 

Lagrange’s equations are applied and the problem is 

expressed in a matrix form, allowing the natural 

frequencies and modes to be calculated for several 

combinations of end conditions, different shapes of 

tapered beams, various functions presenting the change in 

elasticity of the foundation along the beam length, and 

different numbers of degrees of freedom used in the 

discretization procedure. 
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2. GENERALE FORMULATION 

This paper extends Rahmouni and Moukhliss [9, 

10] discrete mechanical model  to investigate the vibration 

of tapered beams with n cracks positioned at n distinct 

places along the x-axis and resting on an elastic Winkler 

base. 

  

2.1. Presentation of the Discrete Model and 

Nomenclature 

Figures 1(a) and 1(b) depict a typical fractured tapered 

continuous beam under a Winkler foundation and the 

corresponding model, respectively. 

In this research, the beam is assumed to be 

homogeneous and isotropic, with Young's modulus E, 

density ρ and length L. The width and height of the cross 

section are given by b(x) and h(x). The cross-section height 

and width at the right and left ends of the beam, 

corresponding to x=0 and x=L, are denoted respectively by 

b (0) =b0, b(L) = bL, h (0) =h0, h(L) = bL (Figure 1(b)). 

As described in the general introduction of this paper, 

the model involves N point masses 1 ,....,a a
Nm m  located at 

the ends of (N+1) bars assumed to be rigid and of 

negligible mass, connected by (N+2-n) spiral springs 

simulating the flexural stiffness of the tapered beam, n 

being the number of cracks. The average rigidity 

coefficient of the spring is noted by 
a
rC  for r=1 to N+2-1. 

The values of 1
a

leftC C=   and 2
a

right NC C +=  depend on the 

beam end conditions [10]. 

• For an embedded beam left rightC C= =  . 

• For a simply supported beam 0left rightC C= =  

• For an embedded beam-Free leftC =   and

1 0N rightC C+ = = . 

 The n cracks are modelled by n spiral springs 
ca
rC   for 

r=1,…,n having a stiffness depending on the position 

1,..., nX X  due to the non-uniformity of the beam and the 

depth 𝑎 of the cracks. The elastic Winkler foundation is 

described by a  distribution  of  linear  vertical  springs  
f

rk  

for r=1,…,N of a constant or a variable stiffness as      

Figure 1(b). 

The notion of average value implies here that the 

stiffness of the spiral spring is related to the position of the 

center of the corresponding bar in the continuous beam, 

Figure 1. 

The bending strain energy of the N-DOF discrete 

system VS, the kinetic energy T, and the strain energy Vf 

due to the Winkler flexible foundation are given by the 

following relations: 

for 1,...,
2

s

s
i j

kij
V y y i j N= = =  (1) 

 

( )
for 1,...,

2 i j

a
ij

m x
T y y i j N= = =  (2) 

for 1,...,
2

f
ijf

i jV y y i j N
k

= = =  (3) 

 

 
 

Figure 1. (a) A typical tapered crack beam, (b) the new equivalent 

discrete model 

 

where, ( )a
ijm x , ( )sa

ijk x and ( )f
ijk x are the mass tensor, 

the stiffness tensor of the tapered beam and the stiffness 

tensor corresponding to the Winkler foundation, 

respectively.   

The total strain energy of the discrete system presented 

in Figure 1 is given by: 
s fV V V= +  (4) 

We apply the Lagrangian formalism. Inspired by the 

work presented by Rahmouni [10] and Moukhliss [9], an 

algebraic system of N equations and N unknowns are 

obtained in the following matrix form: 

( )   ( ) ( )( )  0s l
Ndof Ndof NdofM x y K x K x y     + + =     

 (5) 

( )   ( )   0Ndof NdofM x y K x y   + =     (6) 

where, ( )NdofM x 
   and ( )NdofK x 

   are the mass and 

linear stiffness matrices of the N-DOF system, 

respectively.  The free response of the beam is considered 

to be harmonic [7]: 

cos( )l
i i Ndofy A t=  (7) 

by replacing (7) in (6), the matrix system (6) can be written 

as follows: 

( ) ( )   ( )  
2

0l
Ndof Ndof NdofM x A K x A    − + =     (8) 

where, l
Ndof is the vibration pulsation of the new discrete 

system.   

 

2.2. Calculation of Tensors ( )a
ijm x , ( )sa

ijk x  and ( )f
ijk x  

Related to Discrete N-DOF System 

The tapered beam used in this work are of three types, 

shown in Figure 2.  The total mass of the beam is divided 

into N point masses in the N-DOF system and this 

distribution is made according to the type of the beam 

considered. 

Based on the above remarks [10], the mass tensor of 

the new system is given by: 

( ) ( ) ( )
1

a
ij i ij i ij

L
m x m x S x

N


 = =

+
 (9) 

*0( ) ( ) ,  1,...,
1

a
ij i ij

S L
m x S x i j N

N


= = =

+
 (10) 
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Figure 2. types of the tapered beams examined in this work; (a) Doubly 

tapered; (b) Exponentially tapered (c) Parabolically tapered 

 

in which δij is the Kronecker index given by: 

1 if

0 if
ij

i j

i j


=
= 


 (11) 

Note that ( ) ( ) ( )i i iS x h x b x=  presents the area of the 

tapered beam cross-section located at the abscissa 

( 1) / ( 1),ix i L N= − +  with 1, , 2i N=  +  and N the 

number of degrees of freedom used in the discretization 

process. This function can also be written as 
*

0( ) ( )i iS x S S x=  

where, S0 is the cross-section corresponding to x=0 i.e., the 

cross-section located at the node i=1, 
*( )iS x  is the 

dimensionless form of a cross-section of the tapered beam. 

Expression (10) can be written in the following matrix 

form: 
*

1

*
0 2

*

*0

( ) 0 0

0 ( )
( )

1 0

0 0 ( )

( )
1

Ndof

N

Ndof

S x

S L S x
M x

N

S x

S L
M x

N





 
 
 

  = =   +
 
 
 

 =
 +

 (12) 

where, 
* ( )NdofM x 

 
 denotes the dimensionless form of 

the mass matrix. 

The strain energy of the N+2 spiral springs presenting 

the elasticity of the tapered beam is given by [6, 7]: 

( )
2

2

1 22
1

2 1 0 1

1
2

2

0

r N
s a

r r r r

r

N N

V C y y y
l

y y y y

= +

− −

=

+ + −

= − +

= = = =


 (13) 

following the steps in [10], the expressions for the 

components of the linear stiffness tensor are given by: 

( ) ( )2 2 2
, 3,...,

a
s s r
r r r r

C
k k r N

l
− − = ==  (14) 

( ) ( ) ( )11 1 2

2
2,...,,s s a a

r rr r r rk k C C r N
l

+− − = + == −  (15) 

( )1 22
1,. .

1
.4 , ,s a a a

rr r r r r Nk C C C
l

+ + == + +  (16) 

Take note that the other values of ( )sa
ijk x  are equal to 

zero.  

In order to compute the ( )sa
ijk x  terms in equations 

(14), (15), and (16), the expression of ( )a
rC x  for 

1, , 2r N=  +  must first be determined. The work 

presented in [10] gives the elementary potential energy 

dVbr in a tapered continuous beam, which corresponds to 

an elementary bar with length dx: 

( )
2

1 22

2 1 0 1

( )1
2

2

0

l r
r r r r

N N

EI x
dV y y y

l

y y y y

− −

+ + −

= − +

= = = =

 (17) 

or 

( )
*

20
1 22

( )1
2

2

l r
r r r r

EI I x
dV y y y

l
− −= − +  (18) 

where, ( )rI x  and ( )*
rI x  are respectively the known 

average quadratic moment and a dimensional quadratic 

moment of a cross section located at position xr.  The local 

coordinates of the mass r in the x-axis can be presented by: 

( 1) / ( 1)rx r L N= − +  with 1, , 2r N=  + where l is the 

distance between two successive masses. 

The expression for the spiral spring stiffness ( )a
rC x  is 

found by identifying the two expressions (13) and (17) 

[10]. 

( )
( )*0 , 2,..., 1

ra
r r

EI x EI
C I x r N

l l
= = = +  (19) 

We replace (19) in (14), (15) and (16), respectively and we find: 

( ) ( ) ( ) ( )
*0 0

2 2

*
-2 -2 -2

3,...,

r
s s s
r r r r r rk k k

r N

EI EI
I x

l l
=

=

= =
 (20) 

( ) ( ) ( ) ( )( ) ( )1 11 1

* *0 0

3

*

3
2

2,...,

s s
r

s
r r r rr r rk

EI EI
I x I x

l

N

k k

r

l
+− − −

= ==− +

=

 (21) 

( ) ( ) ( )( )* * * *0 0
1 23 3

1,...

4

,

s s
rr r r r rr

r N

EI EI
k I x I x I x k

l l
+ +

=

= + + =
 (22) 

Then the stiffness matrix representing the N-DOF 

system can be written as follows: 

*0

3

s s
Ndof Ndof

EI
K K

l
   =
   

 (23) 

The stiffness tensor corresponding to the Winkler 

foundation is given by the following formula: 

( )
for  , 1,...,

1

f
if f

ij i ij ij

k x L
k k i j N

N
 = = =

+
 (24) 

or 

( )*
0

3 4
for , 1,...,

( 1)

f
if f

ij i ij ij

k xEI
k k i j N

l N
 = = =

+
 (25) 

where, ( )* f
ik x is a dimensionless parameter that may be 

constant or variable, indicating the distribution of the 

foundation stiffness along the x-axis. The stiffness matrix 

corresponding the Winkler foundation can be described as 

Equation (26). 
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*
1

4

*
2

4
0

3

*

4

*0

3

( )
0 0 0

( 1)

( )
0 0

( 1)

0

0

( )
0 0 0

( 1)

f

f

f
Ndof

f
N

Ndof

k x

N

k x

EI N
K

l

k x

N

EI
K

l

 
 

+ 
 
 
 +  = =  
 
 
 
 
 

+  

 =
 

 (26) 

Let us now consider the cracked beam shown in Figure 

1. We keep the same linear stiffness coefficients 

established in the previous paragraph and we model the 

cracked part as follows: 

The crack of depth ai present in the continuous beam 

of Figure 1(a) by a bar of depth ai is modelled by a spiral 

spring Figure 1(b) whose stiffness 
ca
iC  depends on its 

depth and location.  It should be noted that the position of 

spring i, for i=1 to N, which models the crack i is taken as 

the position of the cross-section located at the center of the 

cracked bar. For this reason, the coefficient 
ca
iC  is known 

in average value.  

Then the expression for the height corresponding to the 

cracked portion becomes ( )( )c
i i ih h X a= − . The spiral 

spring stiffness and the moment of inertia of the crack 𝑖 are 

given by: 

( )
( )

( )
1   ,   1,...,

c c
i ica

i

E I X EI X
C N i n

l L
= = + =  (27) 

( )
( ) ( )( ) ( )

3 3

,  1,...,
12 12

cc c
ii i i ic

i

bb X h X a h
I X i n

−
= = =  (28) 

where, 
c
ib  and 

c
ih  are the width and thickness of the crack 

cross-section, respectively: ( )c
i ib b X=  and ( )c

i ih h X=  

in Figure 1. Factoring by  ( )( )
3

ih X , equation (22) can be 

written in the form: 

( ) ( ) ( )( )
( )

( )

3
3

3

1
1

12

1
, 1,...,

12

c i
i i i

i

c c
i i i

a
I X b X h X

h X

b h Q i n

 
= − =  

 

= =

 (29) 

with 

( )
( )

3
3

1 1 ci
i i

i

a
Q

h X


 
= − = −  
 

 (30) 

where, ( )/c
i i ia h X =  presents the reduced depth of the 

crack i.  Replacing (30) in (29) leads to the final expression 

for stiffness of spiral spring simulating the cracked part:  

( )*0ca c
i i i

EI
C I X Q

l
=  (31) 

To take into account the cracks in the structures studied 

by replacing expression (31) in (14), (15) and (16), 

respectively stiffness matrix in this case can be written as: 

*0

3

cs cs
Ndof Ndof

EI
K K

l
   =
   

 (32) 

on the other hand, the total stiffness matrix of the N-DOF 

system is: 
fcs

Ndof Ndof NdofK K K    = +     
 (33) 

 

2.3. Computation of the Dimensionless Frequencies 

Corresponding to the N-DOF System 

The matrices corresponding to the rigidity (taking into 

account cracks and foundations) and the inertia the discrete 

system shown in Figure 1 are replaced in the equation of 

motion given by expression (8). A new equation that 

contains all of the information on the nature of the 

structure studied is obtained as expression (34). 

( ) ( )  

( )  

2
*0

*0

3

1

0

l
Ndof Ndof

Ndof

S L
M x A

N

EI
K x A

l


  − +

 +

 + =
 

 (34) 

The non-dimensional frequencies are defined as the 

ratios of the natural frequencies of the N-dof system to the 

coefficient 0

4
0

EI

S L
. This includes information about the 

right-hand side at x=0. Which allows us to write the 

following: 

* 2

0

4
0

( 1)
r Ndof

r Ndof rN
EI

S L


 



= = +  (35) 

where, r  are the eigenvalues, for i = 1 to N, corresponding 

to the N vibration modes. Note that the values of r  vary 

with the boundary conditions. 

 

3. NUMERICAL RESULTS  

To validate the new model, we present some numerical 

applications in this part by solving the algebraic system 

(34). The findings for various forms of cracked tapered 

beams resting on elastic foundations are addressed in this 

study for various values of the reduced depth 
c
i  and 

various values of ( )* f
ik x . The results are obtained using 

the MATLAB. 

 

3.1. Numerical Result 1: Exponentially Cracked 

Tapered Beam   

The beam considered in this example is the one 

presented in [8] for the end condition SS.  It is an 

exponentially tapered beam whose width and height are 

given respectively by 0( ) exp( )r rb x b x=  and 0( )rh x h=

. The cross-section area and its squared moment in rx  are 

given respectively by 
*

0 0( ) exp( ) ( )r r rS x S x S S x= = and

*
0 0( ) exp( ) ( )r r rI x I x I I x= = . δ is used to describe the 

variation of geometric properties along the x-axis.  The 

beam is made of the structural material of low carbon alloy 

steel AISI 1050, its mechanical properties are
3210 GPA, 7860 kg/mE = = . 
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Table 1 lists the first four frequency values in Hz 

according to the example presented in (section 2.1) for 

N=49. The values of f are compared to the results 

published in [8] for the particular limit condition SS and 

for 0.5 = − . The results for other end conditions not 

treated in [8] are calculated by intuition in this work as 

shown in Table 1. 

The frequencies are calculated in 3 situations: 

- Situation 1 (S1): There is a single transverse crack at        

X1 = 0.1×L such that: a1= 0.3× h(X1). 

- Situation 2 (S2): There are two transverse cracks whose 

positions and depths are X1 = 0.1×L, a1= 0.3× h(X1) for the 

first and X2 = 0.2×L, a2= 0.3×h(X2) for the second. 

- Situation 3 (S3): There are three transverse cracks whose 

positions and depths are X1 = 0.1×L, a1= 0.3×h(X1) for the 

first, X2 = 0.2×L, a2= 0.3×h(X2) for the second and               

X3 = 0.3×L, a3= 0.3×h(X3) for the third. 

 

 
 

Figure 3. First vibration frequency (Hz) of a beam (simply supported 

exponentially tapered with parameter δ=−0.5 Situation 1) as a function 

of the relative position of the crack and for different values of the 

reduced depth of the crack 0.1; 0.3c =  

 
 

Figure 4. Second vibration frequency (Hz) of a beam (simply supported 

exponentially tapered with parameter δ=-0.5 Situation 1) as a function 

of the relative position of the crack and for different values of the 

reduced depth of the crack 0.1; 0.3c =  

 

 
 

Figure 5. Third vibration frequency (Hz) of a beam (simply supported 

exponentially tapered with parameter δ=−0.5 Situation 1) as a function 

of the relative position of the crack and for different values of the 

reduced depth of the crack 0.1; 0.3c =  

 
Table 1. Display of the first frequency of the beam described in section 2.1 for various end Conditions 

 

  f1Ndof f2Ndof f3Ndof f4Ndof 

  S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 

SS 

Theoretical [8] 139.93 137.82 133.99 553.16 533.29 517.60 1229.6 1193.2 1192.96    

Present study 

N=49 
139.09 137.43 134.35 552.21 534.59 519.87 1225.87 1192.80 1192.03 2156.63 2143.26 2103.48 

CC 
Present study 

N=49 
322.48 322.14 320.59 904.54 895.50 868.63 1782.81 1732.19 1716.63 2932.01 2859.19 2843.97 

CF 
Present study 

N=49 
56.98 54.94 53.66 332.69 332.56 330.10 918.92 909.51 882.82 1795.1 1745 1730 

 
Figure 6. The third vibration frequency (Hz) of a beam (CC 

exponentially tapered with parameter δ=-0.5 Situation 1) as a function 

of the relative position of the reduced crack and for different values of 

the depth of the crack 0.1 ; 0.3c =  

 
Figure 7. The fourth vibration frequency (Hz) of a beam (CC 

exponentially tapered with parameter δ=-0.5 Situation 1) as a function 

of the relative position of the crack and for different value of the 

reduced depth of the crack 0.1 ; 0.3c =  
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Figures 6 and 7 present the third and fourth vibration 

frequency of the beam, respectively which presented in 

section 2.1 for the condition CC and for different values of 

the crack position. 
 

3.2. Numerical Result 2: Parabolic Tapered Beam 

under on a Winkler Foundation 

In this part the foundation will be included in the 

calculation of the dimensionless frequencies, the example 

considered is a parabolic tapered beam of section 

( )2 *
0 0( ) 1 0.8 ( )S x S x S S x= − = , partially supported on a 

Winkler foundation of stiffness ( )* ( ) 500 1 0.5fk x x= −   

with / 4 2 / 3L x L   Figure 8, which is written in the 

index form as follows ( )* ( ) 500 1 0.5f
r rk x x= −  the results 

of this study are given in Table 2 and are compared with 

the results presented in reference [6] for various values of 

N, Table 2. 
 

 
 

Figure 8. Parabolically tapered beam supported on a partial Winkler 

foundation 
 

Table 2. Calculation of the first Five dimensionless frequencies for 

a partially supported beam (Section 3.2) 
 

  *
1Ndof  

*
2 Ndof  

*
3Ndof  

*
4 Ndof  

*
5Ndof  

SS 

[6] 3.382 5.266 7.737 10.253  

N=39 3.021 5.141 7.618 10.082 12.533 

N=199 2.976 5.184 7.704 10.220 12.740 

CC 

 

[6] 4.025 6.318 8.856 11.422  

N=71 3.886 6.307 8.893 11.471 14.014 

N=107 3.859 6.275 8.853 11.424 13.990 

CF 
[6] 2.624 4.677 6.895 9.306  

N=79 2.484 4.565 6.899 9.350 11.839 
 

 

3.3. Numerical Results 3: Cracked Linear Tapered 

Beams Resting on a Winkler Foundation 

Consider now a linearly tapered beam such that 

( ) *
0 0( ) 1 0.8 ( )S x S x S S x= − = , containing a single crack 

at the location X=0.4L of reduced depth 0.3c =  and 

supported on a Winkler foundation assumed uniform of 

parameter 
* ( ) 600fk x =  as shown in Figure 9. 

 

 
 

Figure 9. A linear tapered cracked beam supported on a Winkler 

foundation 

The results of the dimensionless frequency are given in   

Table 3 for various end conditions as well as for different 

values of N. 

 
Table 3. Calculation of the Four first dimensionless frequencies for a 

cracked tapered beam supported on a Winkler foundation (Section 3.3) 
 

  *
1Ndof 

*
2 Ndof 

*
3Ndof 

*
4 Ndof 

SS 

N=49 5.580 6.445 7.685 9.394 

N=99 5.600 6.485 7.727 9.484 

N=199 5.615 6.506 7.746 9.528 

CC 

 

N=49 5.925 6.907 8.5912 10.624 

N=99 5.941 6.931 8.5703 10.580 

N=199 5.948 6.945 8.560 10.557 

CF 
N=49 5.917 6.653 7.332 8.866 

N=99 5.933 6.702 7.3812 8.853 

 N=199 5.941 6.727 7.407 8.846 

 

The results for the frequency differ from one value of 

N to another, generally the convergence is reached when 

we approach N=100, then the most reliable results are 

those corresponding to N=99. 

 

5. CONCLUSION 

 The new model used in this work may be very useful 

in industrial applications since it allows calculating easily 

the vibration frequencies of a tapered beam type structure 

resting on a foundation and containing n transverse cracks. 

It is applicable for all types of tapered beams as well as for 

a variety of laws of variation of the stiffness of the Winkler 

elastic foundation along the length. It also allows 

calculating the frequencies of any tapered beam containing 

n cracks positioned at n different places by making a small 

change in the stiffness matrix. The results provided by this 

work can be used to detect the location and depth of a crack 

in a tapered beam under an elastic Winkler foundation. 
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