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Abstract- We have utilized a kinematic nonholonomic 

model of a wheeled robot in order to delve into two 

possible approaches to controlling motion along 

programmed curves: an active controlled central wheel 

and a passive support central wheel in various 

mathematical forms - both explicit and parametric. In case 

of an active central wheel, we have solved a control law 

design problem related to a steering angle of a controlled 

wheel module. In case of a passive central wheel, we have 

solved a control law design problem related to an angular 

velocity of rotating drive wheels. Use cases of our Maple-

based software for closed trajectories are available. 

 

Keywords: Wheeled Robot, Kinematic Nonholonomic 

Model, Motion Control, Programmed Trajectory. 

 

1. INTRODUCTION 

Wheeled robots are finding more and more uses in 

everyday life [1]. Robots can deliver pharmaceuticals and 

other products to infectious patients when it is advised to 

avoid direct contact. Such robots can emit UV light to 

disinfect premises without human assistance. They can act 

as sappers and participate in special operations 

endangering human life. Most of these wheeled robots 

belong to nonholonomic mechanical rolling systems (in 

addition to geometric constraints, kinematic constraints, 

which cannot be reduced to geometric ones, are imposed 

on the system). Such kinematic constraints are exemplified 

by no longitudinal and lateral slip when wheels roll on a 

supporting surface, which, in turn, makes a specific impact 

on motion control in such systems to be implemented [1-

8]. There is a wide variety of kinematic diagrams with 

various modes of motion that can be classified as follows: 

1) Classical (regular wheels) 

2) Combined (regular wheels and rollers) 

A kinematic model of a wheeled robot enables us to 

consider two possible approaches to implementing motion 

control of a model along programmed curves in case of an 

active controlled central wheel and a passive support 

wheel [3-6]. In this case, the object of research is the 

control processes of the autonomous wheeled robot - three-

wheeled Robot Tima by Infocom Ltd - when implementing 

classical nonholonomic constraints between wheels and 

supporting surfaces. 

The goal of research is to develop the necessary 

mathematical tool and software in order to implement a 

programmed motion of a nonholonomic model of a 

wheeled robot designed for repeated maneuvers along 

closed trajectories. At the initial stage, we have had a task 

to determine the required range of kinematic 

characteristics specific to a controlled wheel module of a 

robot when simulating a complex periodic motion along 

programmed curves in various mathematical forms. 

 

2. CONTROLLING MOTION OF A WHEELED 

ROBOT ALONG PROGRAMMED CURVES  

 

2.1. Setting a Motion of a Nonholonomic Model of a 

Wheeled Robot Along a Programmed Trajectory in 

Case When a Heading Angle or a Curvature of a 

Programmed Curve is Assigned as a Known Function 

of Time 

The system of differential Equations setting a 

programmed trajectory is as follows:  
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In these Equations, v is a velocity of motion along a 

programmed curve (assumed to be uniform) and ψ is a 

heading angle, a change rate of which is related to a 

curvature of a trajectory by the following formula: 

rvK =  where, Kr is curvature. 

In case of wheel modules, the law of variation of a 

steering angle can be determined by the condition that a 

heading angle is equal to an angle of arrival that is tangent 

to a programmed curve and a heading angle of a trajectory 

for a rear uncontrolled wheel: 

tg( ) 1/ rK = =  

In this case, feature point trajectories of a wheeled 

robot are assigned by a system of differential Equations: 
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where, 1  = +  is a heading angle of a front controlled 

wheel, and ( )t is a rate at which a steering angle of a 

controlled wheel module changes (known function of 

time). As an example, consider a case when a heading 

angle changes: “snaking motion” ( ) 1.5sin(5 )t v t =   
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Figure 1. Wheeled Robot Prototype, (Three-Wheeled Robot Tima by 
Infocom Ltd) 

 

Numerical integration of a system of differential 

Equations (1) and (2) in a Maple system enables us to 

visualize a motion of a nonholonomic model of a wheeled 

robot (Figure 2).  

 

 

 

 

 

 

 

 

 
 

Figure 2. Kinematic Diagram of a Three-Wheeled Robot 

 

 
 

Figure 3. Visualized programmed motion of a robot 

 

In this case, blue represents a trajectory of a rear wheel, 

while red represents a trajectory of a midpoint between 

front wheels. 

 

2.2. Defining a Motion of a Nonholonomic Model of a 

Wheeled Robot When a Programmed Curve is Set in a 

Polar Coordinate System 

In this case, we can set a trajectory of Point B 

parametrically (contact points of a rear uncontrolled 

wheel): 
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Consider a case of a “three-leafed rose” programmed 

curve: 
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 is a rate at which a control angle θ changes. 

The results of Maple-based numerical integration of a 

relevant system of differential Equations (Figure 3) are as 

1
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Initial conditions: 

0(0) 1, (0) 0, 0, 0, (0) , (0) 0A A B Bx y x y   = = = = = =  

where, 0 02m, 1m/s, 0.197395598radtl v   == = = =  

A Maple-based program listing is as the following: 

Listing 1 

> x: =sin(3*phi) *cos(phi); 

> y: =sin(3*phi) *sin(phi); 

> Xphi: =diff(x,phi); 

> Yphi: =diff(y,phi); 
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> XXphi: =diff (Xphi,phi); 

> YYphi: =diff (Yphi,phi); 

> Xphi: =subs(phi=phi(t), Xphi); 

> Yphi: =subs(phi=phi(t), Yphi); 

> XXphi: =subs(phi=phi(t), XXphi); 

> YYphi: =subs(phi=phi(t), YYphi); 

> ro: =(Xphi^2+Yphi^2) ^(3/2)/(YYphi*Xphi-

XXphi*Yphi): 

> l: =2; v: =1; 

> thet: =arctan(l/ro): 

> Dtheta is a change rate of a theta control angle, but thet 

appears in the program as well (it is identical in meaning, 

though it was necessary to introduce two functionally 

different dependencies): 

> Dtheta: =diff(thet,t): 

> Dtheta: =subs(diff(phi(t), t) =v/(Xphi^2+Yphi^2) ^ 

(1/2), Dtheta): 

> theta0: =evalf(subs(phi(t)=0, thet)); 

> with(plots): 

> F: =dsolve({diff(xB(t), t) =v*cos(psi(t)), 

diff(yB(t), t) =v*sin(psi(t)), 

diff(psi(t), t) =v/ro, 

diff(xA(t), t) =v*cos(psi(t)+theta(t))/cos(theta(t)), 

diff(yA(t), t) =v*sin(psi(t)+theta(t))/cos(theta(t)), 

diff(thta(t), t) =Dtheta, 

diff(phi(t), t) =v/(Xphi^2+Yphi^2) ^ (1/2, xB (0) =0, yB 

(0) =0, psi (0) =0, 

xA (0) =l,yA(0)=0,theta(0)=theta0,phi(0)=0}, 

[xB(t), yB(t), psi(t), xA(t), yA(t), theta(t), phi(t)], 

numeric,output=listprocedure; 

 

 
 

Figure 4. Visualized Programmed Motion in a Polar Coordinate System 

 

In this case, blue represents a trajectory of a rear wheel, 

while red represents a trajectory of a midpoint between 

front wheels. A control function (θ(t) is a steering angle of 

controlled wheels) is represented by a phase trajectory in 

Figure 5. 

The above examples assume that a steering angle of 

front controlled wheels (a wheel), θ(t) is set by a known 

function of time (arctan(l/ρ) at every instant, and a velocity 

of a rear wheel (wheels) (Point B) is a constant that 

corresponds to a bicycle scheme of a robot with an active 

controlled (guided) wheel. 

 

 
 

Figure 5. Phase trajectory: Steering angle and angular velocity 

 

2.3. Three-Wheeled Robot with a Passive Central 

Support 

A three-wheeled robot model with a passive central 

support (castor) can move along a programmed trajectory 

by controlling an angular velocity of rotating drive wheels 

[4]. 

2 1 2 1;
2

B
B

v v v v v
v

Kol




− +
= = =  

Velocities of wheel centers are related to angular 

velocities of their own rotation around B1B2 axis and radius 

of drive wheels R: 

1 2
1 2;

v v

R R
 = =  

 

 
 

Figure 6. Wheeled robot with a passive support 

 

An angular velocity of a robot in its rotating motion 

around a vertical axis (a change rate of a heading angle) is 

determined by the following equation: 

 =  

where,   is a heading angle formed by a longitudinal axis 

of robot symmetry. 

Taking into consideration a curvature of a trajectory, 

we have the following equation for Point B: 

/ ( )Bv t =  

On the other hand, if there is no longitudinal slip of 

drive wheels, we have the following ratios for velocities 

of drive wheel centers [1-4]: 
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or for linear velocities of drive wheels centers: 
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Consider the implementation of robot motion along a 

complex closed trajectory: 

1
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In this case, velocities of drive wheels are as follows: 
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System of differential equations: 
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Initial conditions: 

1 1 2 2(0) 0, (0) 0, (0) 0, (0) 0.125,

(0) 0

B B B Bx y x y



= = = =

=
 

The relevant program is shown in Listing 2. 

Listing 2 

> v: =1; 

> l: =0.36; Kol: =0.25; 

> ro: =2; 

> ro: =1/(0.5+1.5*sin(5*t)); 

> v1: =v-v/ro*Kol/2; v2: =v+v/ro*Kol/2; 

>F: =dsolve({diff(xB1(t), t) =v1*cos(psi(t)), 

diff(yB1(t), t) =v1*sin(psi(t)), 

diff(psi(t), t) =v/ro, 

diff(xB2(t), t) =v2*cos(psi(t)), 

diff(yB2(t), t) =v2*sin(psi(t)), 

xB1(0) =0, yB1(0) =0.25/2, psi (0) =0, xB2(0) =0, yB2(0) 

=-0.25/2}, 

[xB1(t), yB1(t), psi(t), xB2(t), yB2(t)], 

numeric,abserr=0.1e-8,output=listprocedure); 

> XB1: =subs (F, xB1(t)): 

> YB1: =subs (F, yB1(t)); 

> XB2: =subs (F, xB2(t)): 

> YB2: =subs (F, yB2(t)); 

> List: = []; 

> for i from 0 by 1 to N-1 do List: = [op (List), [[rhs (F 

[2] (1.25*i)), rhs (F [3] (1.25*i))], [rhs (F [5] (1.25*i)), 

rhs (F [6] (1.25*i))]]] end do: 

> TB1:=plot([XB1, YB1, t0...tN], 

style=LINE,linestyle=SOLID, 

color=RED,scaling=constrained): 

>B2:=plot([XB2, YB2, t0...tN], 

style=LINE,linestyle=SOLID, 

color=RED,scaling=constrained): 

>L: =plot 

(List,style=LINE,color=BLUE,scaling=constrained): 

> display (TB1, TB2, L); 

 

 
 

Figure 7. Drive wheel trajectories 

 

 
 

Figure 8. Control synthesis of drive wheel angular velocities 

 

Within the framework of a kinematic model of a 

wheeled robot, we have considered two possible 

approaches to implementing a motion control of a model 

along programmed curves (for an active controlled central 

wheel and a passive support wheel). The practical 

implementation of robot motion along programmed 

trajectories requires using dynamic equations of 

nonholonomic systems [1, 9-14], which is supposed to be 

the subject for further consideration. 

 

3. CONCLUSIONS 

We have developed the mathematical tool and software 

that solves control problems of nonholonomic kinematic 

models of three-wheeled robots with various diagrams 

(active and passive symmetric supports) and various 

options for setting programmed trajectories both in explicit 

and parametric form, including the setting of a curve in a 

polar coordinate system). 

 

NOMENCLATURES 

 

1. Symbols / Parameters 

ψ(t): heading angle of the module frame 

θ(t): steering angle of the front wheel unit 
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ρ(t): radius of curvature of the rear wheel path 

t: temporary variable 

v: rear wheel speed 

xA, yA: coordinates of the center of the front axle 

xB, yB: coordinates of the center of the rear axle 

ω1: angular velocity of the left front wheel 

ω2: angular velocity of the right front wheel 

R: radius of the front wheels 

r, φ: polar coordinates 

Kr: curvature of the trajectory 

l: distance between the axles of the front and rear wheels 
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