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Abstract- The paper proposes an improved control of 

Permanent Magnet Synchronous Motor (PMSM) based 

on direct torque control (DTC) using a fuzzy logic 

controller (FLC) tuned by a Particle Swarm Optimization 

(PSO) technique. Although, the DTC control has many 

advantages, an excellent torque dynamic, good robustness 

to variations the parameters of motor, no need the rotor 

position angle, absence block calculations of PWM, no 

need to use a speed sensor to implement it. But it also has 

many disadvantages like, poorly controlled operation at 

low speed, torque and flux ripples important, the 

switching frequency is not controlled, to minimize torque 

ripple and improve performance of the control system, 

this paper proposes a FLC of speed tuned by PSO 

algorithm instead of using classical Proportional Integral 

(PI) controller. The effectiveness of proposed control and 

the advantages (decrease in response time, and the 

overshoot) compared with conventional PI controller 

tuning by traditional technique and FL controller tuning 

by Trial/error method, is shown by the simulation result 

on MATLAB/Simulink 
 

Keywords: Permanent Magnet Synchronous Motor 

(PMSM), Direct Torque Controller (DTC), Fuzzy Logic 

Controller (FLC), Particle Swarm Optimization (PSO).  
 

1. INTRODUCTION 

Due to its ease of control, efficiency, robustness, high 
power-weight ratio and good dynamic performance, the 
PMSMs are replacing the classical Induction Machine 
and Asynchronous Machine in different applications. 
Many researchers were interested in the controlling 
PMSM. [1] Propose an intelligent backstepping sliding 
mode control of an experimental PMSM. The reference 
[2] presents speed control of an Electric Vehicle based on 
(PMSM) using the Field Oriented Control and he has 
studied the performance of control in case changing of 
motor parameters. The aim of [3] is presentation an 
algorithm of Sensor less control of speed using Finite 
Control Set Model Predictive of PMSM. [4] give a study 
of control strategy of electric vehicles, based on PMSM. 

The [5] Presents a predictive model of torque control 
for PMSM using fuzzy control. The purpose of [6] is 
vector control study of PMSM, simulation and 
experimental results. The DTC were developed by 
Takahashi and Depenbrock for induction machines [7, 8], 
based on possibility to control the torque and the stator 
flux with decoupled way. In the last two decades, due to 
its simple structure, and high response of Torque control 
compared to other strategies, the DTC became one of the 
most popular controllers used to controlling the electrical 
machine. Moreover, DTC control is independent of the 
machine parameters and does not use the current 
controller, which allows to have a fast response of torque 
control with a good robustness to variation of parameter 
machines. But like all other control, DTC also has a 
drawback, essentially flux and torque ripples. In recent, 
many researches have been developed with the aim of 
improvement of electrical machine control by DTC.  

The references [9, 10] present an improvement of 
DTC to minimize torque ripple of Induction Motor (IM) 
control. [11] use a new Optimized Switching Strategy, to 
control of IM by DTC. [12] use a multilevel inverter in 
DTC to minimize of torque ripple. Reference [13] give an 
improvement of the performance of IM by using DTC 
Technique. The paper [14] Use an adaptive Sliding Mode 
Control in DTC of IM Based on Discrete Space Vector 
Modulation. In order to improve DTC, this paper propose 
to control of PMSM with a Fuzzy controller instead of 
using a classical PI controller, but finding parameters of 
this controller (gains of scaling and parameters of 
membership function) is not easy. Regularly, they are 
determined by trial/error technique. in recent years, some 
optimizing methods have been used to identify these 
parameters [16-18]. 

In this paper, the rule base and the membership 
function parameters of the used FLC is provided by 
expert experience, and scaling gains will be optimally 
tuned by the PSO algorithm. The results of simulation 
show that the PMSM speed and Torque control based on 
Adaptive Fuzzy controller based on PSO algorithm has 
better performance (response time, overshoot) then the 
conventional PI controller or manual FL controller. 

 

https://www.uniagents.com/en/institutions/normal-superior-school/index.htm
https://www.linguee.fr/anglais-francais/traduction/regularly.html
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2. CONTROL STRATEGY OF DTC 

The strategy of proposed DTC presented by Figure 1. 
 

 
 

Figure 1. A Proposed direct torque control scheme 

 

The result error (e) and its derivative (de) of 

comparator speed are treated by FLC to generate the 

torque reference. The torque references and stator flux s  
are compared with their estimated values given by block 

estimation to feed the hysteresis controllers. The output 

of the hysteresis controllers and the position (θs) of 
s

  

are transmitted to selector block to calculate Sa, Sb and Sc 

which are used by the inverter to deliver the supply 

voltage to PMSM. 
 

2.1. Voltage Vector Vs and Electromagnetic Torque Te 

Estimator 

The stator flux is given by: 

d
s v Ri

s sdt


= +  (1) 

The voltage Rs.is is considered negligible to the 

voltage vs applied to the PMSM, during a sampling time, 

the stator flux at iteration (k+1) is given by Equation (2): 

( 1) ( )s s s ek k v T + −   (2)
 

The voltage vs is proportional to the stator flux s . 

Figure 2 shows the evolution of 
s

  in plane (α, β). 

Therefore, to increase the stator flux, we have to apply a 

voltage vector collinear and the direction of the stator 

flux s , and vice versa. 

So, in order to increase s , we need to apply a 

collinear voltage vector and in same direction of s , and 

vice versa. The electromagnetic torque is expressed by: 

. sin( )e e s mT k   =  (3) 

where, the electromagnetic torque depends on the 

magnitude of stator flux s , magnitude of rotor flux 

m  and the position θ between s  and m . Then we 

can control the Te and the magnitude of s  in a 

decoupled way. 

 
 

Figure 2. Evolution of s in (α, β) plane 

 

The recommended out-put stator voltage vector of 

inverter is deduced from the difference between reference 

of electromagnetic torque and actual electromagnetic 

torque ( ref e TT T k− = ), and the difference of stator flux 

reference to actual stator flux (
refernces s k − = ) and the 

rotor position (θ) in reference (α, β). When the stator flux 

vector in section i on plane (α, β), the choice of stator 

voltage vector sv  to increase or decrease of s  and/or 

torque is done as shown in Figure 3. 

 

 
 

Figure 3. Choice of vector voltage 

 
2.2. Estimators of s , s and Torque 

• Stator flux and θs estimator 

The estimates components vector of s and s
 

given by: 
 

ˆ ( )s s s sv R i dt   = −  (4) 

ˆ ( )s s s sv R i dt   = −  (5) 

 

The voltages sv   and sv  obtained from ( , , )a b cS S S . 

With applying the Concordia transformation [19]: 
 

s s sv v jv = +  (6) 

β 
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= − +



 = −


 (7) 

With application the CONCORDIA transformation to 

actual currents isa, isb and isc, we obtained the components 

isα and isβ. 

s s si i ji
 

= +  

2

3

1
( )

2

s sa

s sb sc

i i

i i i






=



 = −


 (8) 

The stator flux magnitude is:  

2 2
s s s   = +  (9) 

The positioning zone of s  is determined by the 

angel θs defined by: 

s

s
s

arctg








=  (10) 

• Estimator of torque Te: 

The estimated torque is given by Equation (11) [19]: 

( )
3 ˆ ˆˆ
2

e s s s sT p i i    = +  (11) 

 

2.3. Control of Stator Flux Vector 

- Stator flux corrector 

To control the s , we are using a simple two-level 

hysteresis corrector with Boolean value Kφ in output, 

which indicates, if we must increase (Kφ = 1) or decrease 

(Kφ = 0) the value of stator flux. (Figure 4) 

refs s   −                                                     (12) 

With:  

s : Actual stator flux  

sref : Reference stator flux,  

 : Hysteresis corrector width. 

 

 
Figure 4. hysteresis corrector of stator flux 

 

- Corrector of electromagnetic torque: 

To keep the torque within limits Equation (13), a 

three level-hysteresis corrector is used (Figure 5), to 

purposes of controlling motor in two directions and 

minimize the switching of the switches. 

ref e TT T −   (13) 

where, Tref is Torque reference, and εT: Hysteresis 

corrector width. 

 
 

Figure 5. hysteresis correctors of torque 

 

2.4. Voltage Table of DTC Control 

The voltage table using to control the 
s

 and Te is 

given by Table 1 [19, 20]. 

 
Table 1. Switching table presented by Takahashi and Noguchi 

 

Δφ ΔT θ1 θ2 θ3 

1 1 v2(1,1,0) v3(1,0,0) v4(1,0,1) 

1 0 v7(1,1,1) v0(0,0,0) v7(1,1,1) 

1 -1 v6(1,0,1) v1(0,0,1) v2(0,1,1) 

0 1 v3(0,1,0) v4(1,1,0) v5(1,0,0) 

0 0 v0(0,0,0) v7(1,1,1) v0(0,0,0) 

0 -1 v5(0,0,1) v6(0,1,1) v1(0,1,0) 

θ4 θ5 θ6 

v5(0,0,1) v6(0,1,1) v1(0,1,0) 

v0(0,0,0) v7(1,1,1) v0(0,0,0) 

v3(0,1,0) v4(1,1,0) v5(1,0,0) 

v6(1,0,1) v1(0,0,1) v2(0,0,1) 

v7(1,1,1) v0(0,0,0) v7(1,1,1) 

v2(1,1,0) v3(1,0,0) v4(1,0,1) 

 

3. PARTICLE SWARM OPTIMIZATION 

Particle swarm optimization (PSO) is a computational 

learning algorithm, was firstly introduced by James 

Kennedy and Russell Eberhart in 1995 [21], and 

improved in 1998 [22]. The updated of particles in 

iteration (k+1) is according to the Equation (14) [21]: 

1 1

2 2

( 1) ( ) ( ( ) ( ))

( ( ) ( ))

( 1) ( ) ( 1)

ij ij ij ij

i ij

ij ij ij

v k wv k c r p k x k

c r g k x k

x k x k v k

+ = + − +

+ −

+ = + +

 (14)

 

where,  

- 1,2,...,i d=  with d dimension of particles; 

- 1 2( , ,..., )ij i i idx x x x= : The ith particle [23] shows that 

the performances are similar in the case of a swarm sizes 

10 to 50. In this paper we set 40 a size of used swarm; 

- 1 2( , ,..., )ij i i idp p p p= : Best previous position; 

- gi: Better particle in all the population; 

- 1 2( , ,..., )ij i i idv v v v= : The velocity of particle i; 

- (c1, c2): adjustable cognitive acceleration constant; 

- r1,2 is constant between 0 and 1; 

- w: Inertia weight. w=0.729 is a proposed value by Clerc 

[24] guaranteed the convergence of PSO; 

The used fitness function given by Equation (15). 

1 2 3, , ) 0.5 ISE 0.5 IAEf (k k k = +  (15)
 where, 

- IAE:  Integrated-Absolute-Error. 

- ISE:  Integral-Square-Error. 

The steps of PSO are illustrated in Figure 6. 

 

 

 

1 

-1 

-εT 

  εT 

KT 

 εφ -εφ 

1 

-1 
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Figure 6. Diagram of PSO steps 

 

4. THE PROPOSED ADAPTIVE FUZZY LOGIC 

CONTROLLER 

Fuzzy logic is a technique used in artificial 

intelligence. It was formalized by Lotfi Zadeh [25]. The 

proposed PSO-FLC is equipped with two inputs and one 

output, as shown in Figure 7. 

 

 
Figure 7. Diagram of proposed PSO-FLC 

 

where, 

 - e is error of speed comparator, given by Equation (16): 

( 1) ( 1) ( )
refre k k k + = + −  (16) 

e is the derived of the error given by: 

( 1) ( )
( 1)

e k e k
e k

T

+ −
 + =  (17) 

where, T is the sampling Time.  

 

 

The regulator out-put is: 

( 1) ( ) ( 1)
refref rT k T k u k+ = +  +  (18) 

The membership function of input and output signals 

are given by Figures 8, 9 and 10. 

where, N: Negative, B: Big, M: Medium, S: Small, Z: 

Zero, P: Positive. 

Each variable has 7 fuzzy subsets, with typical rule as 

“If e is NB and de is PB Then Δu is Z”, we have 49 

possible rules (Table 2). We use the MAMDANI’S 

inference method in Defuzzification blocks. 

 

 
 

Figure 8. Membership function of error 

 

 
 

Figure 9. Membership function of differential error 

 

 
 

Figure 10. Membership function of control signal 

 
Table 2. Rules base 

 

e 

de 
NB NM NS Z PS PM PB 

PB Z PS PM PB PB PB PB 

PM NS Z PS PM PB PB PB 

PS NM NS Z PS PM PB PB 

Z NB NM NS Z PS PM PB 

NS NB NB NM NS Z PS PM 

NM NB NB NB NM NS Z PS 

NB NB NB NB NB NM NS Z 

 

 

 

     

NB NM Z PS PM PG NS 

-1     -0.8    -0.6     -0.4     -0.2        0        0.2      0.4       0.6      0.8         

-1            0 

 

 

     

NB NM Z PS PM PG NS 

-1     -0.8    -0.6   -0.4     -0.2       0        0.2     0.4      0.6      0.8       -1         

 

 

     

NB NM Z PS PM PG NS 

-1     -0,8    -0,6   -0,4     -0,2       0        0,2     0,4      0,6      0,8       -1         
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5. TUNING THE FLC PARAMETERS USING PSO 

For each new population resulting from the PSO 

swarm, the variables from the algorithm are stored and 

inserted in FLC Bock and, from that, the result of the 

fitness function Equation (15) is estimated. This is done 

until reaching the stopping criterion. Three parameters of 

the FLC need to be tuned. We use the PSO algorithm to 

tune of 3 gains K1, K2 and K3 of block FL-controller 

(Figure 11).  

 

 
 

Figure 11. PSO-FLC schemes in MATLAB 

 

The steps of the used algorithm are:  

- Step 1: generating random variables parameters of PSO 

algorithm 

- Step 2: collecting error data (e), differential error (de) 

and controlled signal (du) 

- Step 3: computing the equation of objective function  

- Step 4: running PSO such that minimizing 

- Step 5: repeating steps 2, 3 and 4 until the convergent 

criterion is satisfied. 

 

• Parameters of PSO Algorithm and the Tuned Values of 

K1, K2 and K3 

The PSO-parameters and the values K1, K2 and K3 

tuned by PSO algorithm are given in Table 3. 

  
Table 3. Parameter of PSO 

 

Variable Value Description 

i 

k 

c1 

c2 

w 

r1, 2 

40 

300 

2 

2 

0.729 

0.95 

Size of the swarm 

Iteration number 

cognitive acceleration constant 

cognitive acceleration constant 

Inertia weight 

random function 

k1 

k2 

k3 

1.35e-2 

3.71e-6 

9.41e3 

variables of Matrix gain of 

Luenberger Observer 

 

6. PARAMETERS OF MOTOR AND RESULTS OF 

SIMULATION 

• Motor Parameters [19] 

The parameters of Motor are given by Table 4. 

 
Table 4. Parameters of PMSM 

 

Parameter Value Unit 

stator resistance 1.4 Ω

 d-axis inductance 6.6 mH

 q-axis inductance 5.8 mH

 magnetic flux constant 0.1546 Wb

 Friction coefficient 0.00038 1 1N.m.rad .s− −

 Motor inertia 0.00176 2kg.m  

 

To illustrate the behavior of the proposed technique, 
the Figures below present the results simulation using 
MATLAB/Simulink. The characteristics of the control 
are imposed by the operating conditions of the used 
PMSM (Table 3). Thus, we apply a load of 4 Nm at 
0.05s<t<0.15s and -4 Nm-1 at 0.25s<t<0.35s, Figure 
12(a), with a speed reference 100 rad/s at 0s<t<0.2s and   
-100 rad. s-1 at 0.2s<t<0.4s Figure 13(a). 

Figures 12 to 15 represent the evolution of 
Electromagnetic Torque, Rotational Speed, Stator Flux 
vector and Current Phases, in the absence and presence of 
load (±4 Nm) and with inversion of reference speed 
(±100) rad/s. 

The simulation results demonstrate the good 
performance of proposed controller (FLC tuning by 
Particle Swarm Optimization algorithm PSO-FLC) in 
comparison with a conventional method (using classical 
PI controller or manual FL controller). 
 

 
 

 

 
 

 

 
 

 

Figure 12. (a) Response of electromagnetic torque, (b) Zoom 1 in  

Figure 13(a), (c) Zoom 2 in Figure 13(a) 
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(a) 
 

 
 

(b) 
 

 
(c) 

 

 
 

(d) 

 
(e) 

 

Figure 13. (a) Rotational speed of PMSM, (b) Zoom 1 in Figure 13(a), 

(c) Zoom 2 in Figure 13(a), (d) Zoom 3 in Figure 13(a), (e) Zoom 4 in 

Figure 13(c) 

 

At 0s<t<0.2s the reference Speed is 100 rad/s with 

application a load 4Nm at t = 0.02s and its elimination at 

t = 0.15s. during start-up of PMSM, Figure 12(a), the 

torque achieves up to 17 Nm and then it stabilizes a zero 

value at Figure 12(b). 

- t = 0.120s without overshoot in case the proposed 

control  

- t = 0.0145s in the case of conventional PI controller, 

with 0.6% of overshoot.  

- t = 0.140s in case manually FL, with 0.5% of overshoot. 

with application of the load (at t = 0.05s), the 

electromagnetic Torque of PMSM responds with 

negligible influence in the case of the proposed control, 

and with an overshoot in the other cases Figure 12(a) and 

12(c).  At t = 0.2s the speed restores quickly on its 

reference, 100 rad/s in the case of proposed control 

without overshoot and with a good response time, but 

with overshoot on the other methods Figure 13(c). 

The Table (5) gives a quantitative comparison 

between the three studied methods, deduced from Figures 

13(b), (d) and (e). 

Figure 14(c) shows that the stator flux vector (Figure 

14(a)) follows its reference (φsref = 0.3Wb) and the two 

flux components φsα and φsβ are in Quadrature and that 

and describes a quasi-circular trajectory as shown in 

Figure 14(d). Figure 14(b) shows that, there is no 

improvement of stator flux ripple by proposing control 

compared to other studied technique. Figure 15 shows 

that the stator current keeps a less noisy sinusoidal form 

compared to the classic CV [26] and IOL [27]. 
 

7. CONCLUSION 

An improved direct torque control algorithm of 

PMSM is introduced in this paper. We used the Particle 

Swarm Optimization algorithm to set the three parameters 

of the FL controller in the DTC. The simulation results 

indicate that the dynamic performance (response time and 

overshoot) of the proposed control system is better than 

the conventional PI or Classical FLC system of PMSM, 

and he can reduce the flux and torque ripple and less 

current harmonic comparing to vector control or Input 

output linearization control.  
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Table 5. A quantitative comparison between the three studied methods 
 

 Response time (s) 
Static error 

overshoot Complexity 
(Load=0 N.m) (Load=5 N.m) 

DTC with Classical PI 0.0128 0.014 0.0041 0.52% high 

DTC with Manual FL 0.0131 0.0004 0.027 0.50% Very high 

DTC PSO-FL 0.0117 0.0037 0.284 0.00% Medium 
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(d) 
 

Figure 14. (a) Stator flux, (b) Zoom in Figure 14(a), (c) Stator flux 

components ( s and s ), (d) Stator flux in the plane (α, β) 

 

 
 

 

Figure 15. Currents phases (isa, isb, isc) 
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