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Abstract- There are several approaches to optimize 

engineering models. This chapter proposes the two 

methods of Lagrange release and convex optimization to 

solve engineering problems. In the Lagrange release 

algorithm, the constraints specify that are more difficult to 

satisfy with a specific coefficient to the objective function 

of the sample and its value with the help of sub-gradient 

methods in different iterations. Lagrange release algorithm 

is one of the most widely utilized innovative methods in 

calculating mathematical constrained optimization 

models. This algorithm, which is developed based on 

Lagrange Case to solve constrained optimization 

problems, frees all or some limitations of the problem 

while providing information from the optimal solution of 

the main problem, creating acceptable approximate 

answers for the main problem, which are mainly from 

these solutions can be used as a boundary in other 

optimization algorithms. But another way to solve 

problems is a convex optimization. Convex optimization 

is the only method that can guarantee a globally optimal 

solution in engineering models. Because in convex 

modeling, there is only one optimal solution. There are 

several ways to solve convex optimization problems. We 

present the convex mathematical models for solving 

engineering problems. We then implement these models in 

the GAMS Software and analyze the results. We apply the 

convex and non-convex models of Economic Dispatch 

(ED) subject to the software and analyze the results of 

these two cases. So, in this chapter, we present two 

methods for solving nonlinear problems. In the first 

method, we solve the nonlinear model by releasing 

Lagrange. In the second method, we linearize and compare 

the results with each other. 

 

Keywords: Convex Optimization, Lagrange Release, 

Economic Dispatch, Non-Linear Models. 

 

1. INTRODUCTION 

ED is a significant problem for ISO / RTOs to earn the 

ED exploitation of the power system in the markets of day-

ahead and real-time. This goal is usually for optimally the 

entire cost of generation while meeting the system 

schedule and operational requirements. Conventional ED 

is done in real-time every 5 minutes for a moment that 

often is called Static Economic Dispatch (SED). Also, 

dynamic ED (DED) is used to improve the instantaneous 

ED to a multistage problem. DED is used to forecasted 

load for a special interval considering power plant ramp 

speed limitations. 

A neural network (NN) utilizing multiple processors is 

considered in [1] to study the DED problem. Also, the 

DED problem is utilized in unregulated systems [2]. A NN 

utilizing multiple processors is considered in [1] to survey 

the DED problem. Also, the DED model is used in 

disordered systems [2]. Recently, as a replacement for the 

conventional SED, prospective ED has converted a 

modern industry standard, which is a DED subject, with 

alone first-stage ED decisions being implemented. The 

updated forecast information is used in the ED problem for 

future decisions. Thus, DED is crucial for operational 

operation and dispatch before planning is generated so that 

the system can properly control sudden variations in load 

soon. The DED problem by a large number of intervals is 

a very large spatial-temporal planning subject that may 

pose a major computational problem.  

In general, there are many methods for solving DED, 

include dynamic programming, genetic methods, 

simulated annealing method, and other heuristic 

approaches. However, the selection of parameters 

significantly affects the efficiency of approaches. With the 

improvement of mathematical planning, simple methods 

and interior points are used due to their robustness in the 

fields of industrial research and engineering. To improve 

computational performance, advanced decomposition 

models are extensively checked in past years to divide the 

main very large model to - sub-models when are solved in 
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parallel. In addition, the Lagrange relaxation (LR) 

approach while is equal for a two-step plan, is considered 

in [3] to divide a very large optimization subject by 

associated nature to multiple small sub-problems.  

In [4], the step capacity of the dual ascent approach to 

calculate the dual problem is determined properly and 

multiple other presumptions are maintained, this approach 

can be converged. Ref. [5] used the Gaussian-Newton 

approach to update the coefficients, which reported proper 

solutions. Although, the Lagrange relaxation approach 

considered a great number of coefficients for the relaxation 

link limitations, which raises the challenges of the 

Lagrange dual model. However, the Quasi-Newton 

approach for storing and refreshing the Hessian matrix 

requires a large amount of memory space, which can take 

a lot of CPU time. In addition, [6] reported that Lagrange 

relaxation hypotheses are generally robust in some 

operating applications. In [21], the most used Evolutionary 

Computation based models and their applications on OPF 

are reviewed and also some unused Evolutionary 

Computation based models for OPF are also presented. In 

[22], tried for demonstrate reactive power optimization 

model, miscellaneous targets, voltage stability indexes 

types and formulization of them, reviewing recent studies 

in this filed and comparison between them for studding 

efficiency of them. 

To solve the mentioned models, the augmented LR 

(ALR) approach is strengthened, to some extent, the 

robustness for multiple updates, the experience of 

simplicity and stability of coefficient repetitions, and 

especially, for convergence without assumptions exact 

include convexity or finiteness of cost function was 

developed. It is due to the ALR considers an additional 

second-class penalty, the advantage of which is that in 

relatively mild conditions it can distinguish the dual 

problem from the main model. Unfortunately, the 

contributed penalty in the ALR function is non-derivative 

and leads to the problem of direct decomposition 

compared to the LR approach. This difference is critical 

for the ALR method. For the most common case, the 

alternating direction method of multipliers (ADMM) 

model combines dual ascent decomposition with stronger 

convergence. In ADMM, the common element of 

variables is updated periodically or sequentially, where a 

Gauss-Seidel pass is used over common variables.  

Recently, [7] has considered a diagonal second-class 

estimation approach for approximating the duration of 

non-derivative penalties. The optimal solution for convex 

optimization is also proved. Another problem by both LR 

and ALR is that limitations are evermore divided into 

“easy limitations” that can be maintained and “hard 

limitations” that can be maintained with cost functions. So, 

choosing “hard constraints” is essential. LR is commonly 

used for “hard constraints” such as energy balance and 

security limits. However, for the following reasons, we 

will choose ramp limits as “hard limitations”: 

1. ramp rate limitations for parallel computation have a 

much better degree of derivation from relaxing energy 

equality limitations and safety limitations, meaning that 

the relaxing ramp rate limitations can lead to better 

performance. 

2. In power networks by many fast-ramping gas-fired 

generators, relaxing ramp rate limits have more advantages 

from systems with slow-ramping coal generators.  

3. Today, in the operational exploitation and dispatch of 

the power system, SEDs due to the DC method can be 

significantly operated by many mature models and 

commercial solvents. The ALR approach with relaxing 

ramp rate relaxation limitations for DED is easily obtained 

from SED-based solvers. In addition, considering the 

possible N-1 security limitations and booking needs, the 

proposed approach can still effectively control this subject 

as long as it is easier to resolve the relevant SED. In 

particular, the zero-gap convex relaxation approach for 

ACOPF is extensively checked in recent years. 

 

2. FORMULATION OF THE DED SUBJECT 

DED can be one of the most essential subjects in 

optimizing the power network operation while searches for 

the best program for UC. The cost function of the DED 

subject is to optimize the entire cost of production on the 

planning interval while is represented as follows [9]: 

2
, ,

1 1

min
T N

j j t j j t j

t j

P b P c
= =

+ +  (1)   

where, j and   jb  are the fuel cost factors of the power 

plant ith. N is the number of power plants from power 

production, and ,j tP is the output power of the power plant 

ith in time. T is the entire number of planning times. The 

hourly power balance is explained using in Equations (1) 

and (2). The ,D tP  and ,L tP  are the entire load and the 

entire transmission losses of the system over hour t, 

respectively [9]: 

, , ,

1

N

j t D t L t

j

P P P t
=

= +   (2) 

System losses are calculated using B-matrix 

coefficients in Equation (3). Real power generation 

limitations are applied using in Equation (4). Ramp-up and 

ramp-down limitations are applied using in Equations (1)-

(5), respectively [9]. 

, , , 0 , 00

1 1 1

N n N

L t j t ji i t j j t

j i j

P P B P B P B t
= = =

= + +    (3) 

min max
, ,j j t jP P P j t     (4) 

, 1 , , 1 ,j t j j t j j tP DR P UR P j t− −−   +    (5) 

Generation power plants may have a limited operating 

area based on constraints in the device or instability center. 

The output product of the generator should be in one of the 

permitted operating areas. Therefore, this subject 

formulated as a nonlinear programming (NLP) with 

disappeared quality [8]: 

( ), ,
1

,
jz

L t zj t
z

P P j t
=

=    (6)   

( ) ( ) ( )
min 2 max

, , , , ,
z zz

z j z jj t j t j tP P P P P j t z        (7) 
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( ) ( ), , 0 , , 1,2,..., 1,

1,...,

i n jj t j t

j

P P j t Z

n i Z

 =    = −

 = +
 (8) 

where, jZ  is the number of operating areas allowed. 

min

zj
P  and 

max

zj
P  The high and low constraints of the 

operating area Zth are allowed by power plant i. Equations 

(7) and (8) emphasize only one of the non-zeroing P sub-

components while zeroing the other sub-components. For 

utilizing the mentioned problem for POZs, the following 

integer limitations can be considered to deal with POZs 

[9]: 

( ), ,
1

,
jZ

L t zj t
z

P P j t
=

=    (9) 

( ) ( ) ( )
min max

, , , , ,
z zz j z z jj t j t j tu P P u P j t z        (10) 

( ),
1

1 , ,
jZ

zj t
z

u j t z
=

=     (11) 

where, ( ), zj tu is a binary variable, which related to the Zth 

rated operating area in power plant i at hour T. This 

problem becomes a MINLP model. 

 

3. EXECUTION OF OCD (OPTIMIZATION 

CONDITION ANALYSIS) IN DEAD MODEL 

The DED subject is a large-scale NLP or MINLP 

model in very large practical power networks. Therefore, 

the execute time (or CPU) is critical to the real-time 

execution of the DED subject. If the NLP method is used 

for the DED subject, it can be broken down into some sub-

problems with low-dimensional (For example, there are 24 

sub-problems for a 24-hour DED.) Therefore, the needed 

CPU time is significantly decreased. In this chapter, 

optimization condition decomposition (OCD) is used for 

this purpose. The OCD method reduces complex 

limitations in the NLP subject on a large scale. In the case 

of DED, ramp rate limitations, for example (5), are 

complex limitations. By reducing these limitations, the 

reduced subset of mth (RSP), (for example, for t = m) of 

DED in the kth replication of OCD is as following [9]: 

( ) ( )( ), ,

1

min
N

kk
m j m j m

j

TC C P
=

=  (12) 

where, 

( )( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 , 1

, , , , , , 1

1 , 1 1

, ,, 1, 1 , 1

UR kk k k

j m j m i j m j m j j m j j m

k DR k kk k

j m j j m jj mj m j m

C P a C P b P c

P P UR P P DR





−

+

− − −

++ +

= + + + +

   + − − + + − −   
   

 (13) 

The objective function must be minimized due to the 

following limitations [9]: 
( ) ( ) ( )

( ) ( )( )

1 1

,, 1 , 1

, ,

, ,

:

,

k kk

i i m ii m i m

DR k UR k

i m i m

P DR P P UR

i 

− −

− −−   +


 (14) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 , 3 , 4 , 5 , 6 , 7 , 8  (15) 

where, 
( ),

,

DR k

i m  and 
( ),

,

UR k

i m  are Lagrangian coefficients 

that correspond to the complex limitations in Equation (5) 

of the mth sub-problem in repetition kth. In Equation (15),  

,i tP  and ,L tP  with their current equations, i.e. 
( )
,

k

i mP  and 

( )
,

k

L mP  and , z

k
i mP are substituted in the corresponding 

equations. The DED model is solved using the OCD in 

three levels.  
• Step 0. Initial start: In this step, all Lagrangian variables 

and coefficients are initialized from complex limitations in 

Equation (5). In this chapter, the primary values of the 

variables are selected with calculating the DED without 

considering transmission losses, POZs, and ramp rate 

limitations. This primary model can be basically a simple 

T convex ED subject. 

• Step 1. Solve RSPs: At this stage, the T RSPs are 

calculated independently and the optimum amounts to 

entire variables are solved by Lagrangian coefficients of 

complex limitations in Equation (5). 

• Step 2. Stop Criterion: If the variables or the value of the 

total objective function in Equation (1) do not exchange 

significantly in two consecutive iterations, the algorithm 

stops. Otherwise, proceed from step 2. It is worth noting 

that if the RSPs are solved sequentially rather than in 

parallel, the recently earned amounts for the variables can 

be utilized to accelerate the convergence of the method. 

Namely, if by repeating RSP, k corresponding to interval 

m-1 is calculated before RSP of interval m, then it is better 

to propose the last amounts corresponding to Equation 

(14). That is, in Equation (14) it should be used 
( )1

, 1

k

i mP
−

−   

instead of
( )
, 1

k

i mP − . 

 

4. LAGRANGE RELEASE METHOD 

A mathematical problem by a large number of intervals 

is in fact a very large Spatio-temporal planning subject that 

may pose a major computational problem. Dynamic 

programming, genetic algorithm, simulated annealing 

approaches, and other heuristic methods are utilized to 

solve this program. However, the parameter choice 

significantly affects the performance of these methods. 

Mathematical programming is robust in engineering 

subjects [17-20]. To better performance, decomposition 

methods are proposed to transform the very large model 

into some small-scale problems. Also, the ALR approach, 

which is equivalent to a two-step model, has been 

considered to divide a very large optimization subject with 

associated nature into several small sub-problems. This 

method can be convergent if the step size is properly 

selected to solve the dual problem and several other 

assumptions are maintained. The Gaussian-Newtonian 

approach can also be utilized to update coefficients. 

To solve the above subjects, the ALR method has been 

developed, to some extent, robustness and updating, 

simplicity and stability of coefficient repetition, and in 

special, for convergence without assumptions, include 

exact convexity or limitation of the cost function. It can be 

due to the ALR considers an additional second-class 

penalty.  

Unfortunately, the contributed penalty in the ALR 

function is non-derivative and leads to the subject of direct 

analysis compared to the LR approach. Several methods 
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have been proposed to maintain this property. The most 

common can be the Alternating Direction Method of 

Multipliers (ADMM), which aims to mix dual ascent 

breakdown with stronger convergence. In ADMM, the 

common element of variables is updated periodically or 

sequentially, where a Gauss-Seidiel pass is used over 

common variables. Recently, it has proposed the DQAM 

to approximate the duration of the non-derivation penalty. 

The optimal solution for convex modeling is also proved. 

ED storage subjects with complementary limitations are 

highly non-convex and hard to resolve. In this research, a 

precise relaxation approach for non-convex ED relaxation 

in the convex form under two efficient conditions is 

proposed. Mathematical proof can be proposed and 

numerical experiments confirm effectiveness of this 

approach. 

The utilize of energy storage systems (ESSs) has been 

widely considered in the ED of electricity generation. 

However, complementary limitations, which prevent ESS 

from simultaneously charging and discharging, must be 

considered in an ESS ED problem, and this method is 

highly non-convex and effective in resolving it. Mixed 

integer programming (MIP) approaches are commonly 

utilized, with fine penalty approaches, smoothing 

approaches, and regular relaxation approaches also tested. 

However, these methods resulted in a high exaction time. 

Regular relaxation methods are recently considered. 

Although these approaches do not introduce additional 

variables and do not result in duplication, they may be 

challenged under conditions where ESS owners have to 

pay for power network or ESS restrictions are active. It is, 

therefore, necessary to consider whether supplementation 

limitations are completely relaxed for general states. In this 

study, a precise relaxation approach for convex non-

convex ED relaxation under two sufficient conditions has 

been proposed that can be applied in general cases as well. 

 

4.1. ED Related ESS 

horizon extends from t = 1 to t = T with an interval of 

∆t. A storage-related ED model based on the direct current 

(DC) model can be formulated as follows [10]: 

( )( ) ( )( )( )

( )( )

min dc ch
j j j j

j N t T

G
i i

j N t T

g p t f P t

h p t

 

 

− +


 (16) 

For each of the following limitations 

, ,t T j N i L    [10]: 

( ) ( ) ( ) ( ),2,10 , ,
chch
jj jj tP t P t t    (17) 

( ) ( ) ( ) ( ),4,30 , ,
dcdc
jj jj tP t P t t    (18) 

( ) ( ) ( )

( )
( )

0

1
1 1

t tt

j j j j

dc
jch ch

j j dc
j

E t E

P
P t




 


 



−

=
= − + − 

 
 − 
 
 


 (19) 

( ) ( ) ( )min max
,1 ,2( ) ( ), ,j j j j jE t E t E t t t    (20)  

( ) ( )
( )

1
1 ,

dc
T tT jch ch

j j j j idct
j

P t
P t t E  



−

=

 
 −  −  
 
 

  (21) 

( ) ( ) 0ch dc
j jP t P t =  (22) 

( )
GG G
jjjP P t P   (23) 

( 1) ( )dn G G up
j j j jR t P t P t R t  + −    (24) 

( ) ( ) ( )( )
( ) ( ),

G dc ch
j j jj N j N

jj N

P t P t P t

D t t

 



+ − =

=

 


 (25) 

( ) ( )

( ) ( )
( ) ( ),1 ,2,   ,

G dc
Lnj jLn
ii ji i t i tch

j N j j

P t P t
P GSF P

P t D t
 −



 +
  
 − − 

  (26)   

where, jg  the cost of the ESS discharging is, jf  is the 

cost of charging the ESS. 0jf  means that the network 

storage costs to charge, and vice versa if 0jf ;   ih is the 

operating cost of the generator at bus i and ( )dc
jP t  is the 

ability to charge and discharge storage on the network side 

at hour t, ( )
ch
jP t  and ( )

dc
jP t   are the charge and discharge 

rate limits, ( )ch
j t  and 

dc
j  are charge and discharge 

efficiencies. ( )jE t  is the energy stored in period t, 

max ( )jE t and 
min ( )jE t  are the maximum and minimum 

constraints of stored energy,
0
jE  is the primary energy j

is the rate of self-discharge, T
jE is the entire charge load,

( )G
jP t is the generation from the generator at hour t, 

G
jP

and 
G
jP  are the maximum and minimum constraints of 

the output, 
up
jR and ( )jD t  the ramp.are the range of 

dn
jR   

is the demand on the bus i at hour t, i jGSF − is the factor of 

production changes to line j of bus I, 
Ln
iP and are the 

Ln
iP   

maximum and minimum constraints of transmission 

capacity. When, ( )t , ( ),1j t  to ( ),2i t , ( ),1i t , 

( ) ( ),1 ,2,j jt t  , ( ),4j t  and i  are the corresponding 

limitation coefficients. 

The model is explanted as follows. The target in (16) is 

the operation cost of generators and storage devices. 

Generally, ih  is utilized as a convex second-class function, 

jg  and  jf   are a linear function. So, the problem is a 

convex model. Assume in Equations (17) and (18) are the 

range of charge and discharge capacity of storage space. 

Equation (19) can be an integral relation between stored 

energy and the previous charge and discharge process from 

1 =  to t [10].  

Limitation in Equation (20) models the limitation of 

stored energy, which equals the limitation of charge mode. 

Limitation in Equation (21) indicates the need for pure 

charging - especially for collecting electric vehicles (EVs), 
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r
jE  is the total charge demand. Limitation in Equation 

(22) is a complementary limitation, which makes the 

model highly convex. Therefore, the time label is used. 

Limitations in Equations (23) and (24) represent the 

production limitations and ramp of a generator. Limitation 

Equation (25) is the power equality of the power grid over 

time and Equation (26) represents the limitations of the 

two-way transmission capacity of the lines. 

 

4.2. Relaxation Conditions 

If Equation (22) relaxes, the problem becomes convex. 

However, the best answer is easily earned. The Karush-

Kuhn-Tucker (KKT) conditions are both important and 

efficient [10]: 

( )( ) ( )( )

( )( ) ( )

( ) ( )( ),1 ,2

1:inf sup  ,

2 :

 , 

dc ch
j j j j

ch
j j

j i i

i

Con g P t f P t t

Con f P t t

GSF t t t



 

  

  +

− 

 

Proof: Suppose 
ch
jP  and 

dc
jP  exist for storage j at time 

t in the optimal relaxation method (RM). So ( ),1 0j t =  and

( ),3 0j t =   due to complementary fertility conditions. 

Suppose L represents the Lagrangian function of the RM 

function, j  represents 1 j−  and 

( ) ( )( ),1 ,2Γ    t T t
t j j j j jt

t t


    − −


= − + . Therefore, 

using KKT conditions, the following relation is established 

[10]: 

( )
( )( ) ( ) ( ) ( )

( ) ( ) ( )( )

,1 ,2

,1 ,2 0

ch ch
l j j j jch

j

i j i ii

L
f P t t t t

P t

t t GSF t t

  

  −


= − − + − 



 + + − =

 (27) 

With ( ),1 0j t = , ( ),3 0j t   and condition 2, it can be 

seen that 0t   is suitable for ESS j at hour t. Utilizing 

KKT conditions, the following relation is re-established 

[10]: 

( )
( )( ) ( ) ( )

( )

( ) ( ) ( ) ( )( )

,3 ,4

,1 ,2 0

dc
l j j jdc dc

j j

i j i ii

t tL
g P t t t

P t

t GSF t t t

 


  −

 
= − + + −



− − =

 (28) 

With ( ),3 0j t =  by combining Equations (27) and (28), 

we have [10]: 

( ) ( ),2 ,4

1
( ) ( )

0

j j

j j

ch
t t g f t

jdc

j

t t





 

 
 

 −   + − + 
 
 

+ =

 (29) 

Because of condition 1, it can be inferred that it is also 

stored for time ESS. So, it can be seen that both 0ch
jP 

and 0dc
jP  cannot emerge in the optimal RM method for 

any ESS at any time interval. However, rest under 

conditions 1 and 2 is acceptable. The above conditions can 

be used to the ED model. For example, with renewable 

energy production considered. This proof also exists for 

cases not considered in Equation (19).  

Specifically, with the cost of charging and discharging 

as input, the condition 1 can be easily checked. In addition, 

the condition 1 can be satisfied in two ways. If the ESS 

belongs to the power system, its operating cost may be 

ignored during distribution, therefore; Condition 1 is met. 

Also, if the ESS is owned by a third term, since attract 

individuals to partnership in the ED, the border 

compensation paid to them for discharging a power plant 

of energy must cover the owner's costs of recharging that 

value of energy. So, jg = jf =0, so condition 1 is met. 

Also, if the ESS is owned with a third term, the border 

compensation paid to them for discharging a power plant. 

Therefore, it must continue to satisfy 

( )( ) ( )( )'
inf supdc ch

j j jj
g P t P t   . 

In the case of condition 2, because the marginal value 

of location on the bus j ( )jLMP  in an ED-based DC model 

can be derived from  

( ) ( ) ( ) ( )( ),1 ,2i j i ii
t GSF t t t  −+ −  determined.  

Condition 2 can be converted ( )( )ch
j j jf P t LMP   

meaning that the charge must be (exactly) less than jLMP

at the junction. 

If jLMP or its lower limit can be used using existing 

historical data, for example, an artificial NN (ANN) 

method, which is consistent with price predicting in action. 

 

4.3. Parallel LR  

A PALR approach is suggested for the DED subject by 

relaxing the ramp rate limits. Because of the inseparability 

of the second-class penalty parameter, DQAM can be used 

to break down the main problem into several sub-problems 

by similar nature that can been parallel by commercial 

SED solvers [11]. 

 
4.3.1. Formulation of DED Model 

  The DED subject is comprehensively utilized in the 

energy management systems and can generally be 

described as follows [11]: 

( ) ( )
,

,

1 1

, ,

1 1

min max
, , ,

, , , 1 ,

max
,

DED min                 (a)

s.t. 1,...,               (b)

1,...,               (c)

, 1,...,              (d)

j t

N T

j t
P

j t

N N

j t j t

t t

j t j t j t

j t j t j t j t

j t

Z f P

P D t T

P P P j N

Rd P P Ru j N

F

= =

= =

−

=

= =

  =

−  −  =

− 



 

max
, , , , ,

1 1

, 1,..., (e)
N M

l j j t l j i t l t

j i

S P H D F l L
= =

−  = 

 (30) 

That (.)f  is a fuel cost function, considered as a 

second-class function or piece-wise linear function, thus 

leads to second-class or LP models. Equations (30)b, (30)d 

and (30)e show the power equality limits, the ramp rate of 
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generator, and the limits of the transmission capacity, 

respectively. From the DED model, the polygon is 

surrounded by the T equation, the NT + L inequality, and 

the elemental limitations NT with the NT variables. This is 

a high dimension problem, the size of which grows rapidly 

with increasing time intervals. Also, T is very large, which 

presents more computational. 

Indeed, the cost function in Equation (30)a and limits 

in Equation (30)c are separable from decision variables

1 2 ,      ,    , Tx x x , however the linear limitation in Equation 

(30)d makes them. To dominate the inseparability problem 

of the bond limitation in Equation (30)d, we consider the 

ALR method to turn it into a function. While this new 

model with ALR can be broken down into several isolated 

small problems and calculated in parallel. This almost 

reduces computational complexity. Note that the 

relaxation limitations in the ALR formula are usually used 

for equality. So, we can enter the fictitious variables ,  i tu

for each limitation in Equation (30)d, as follows [11]: 

, , 1 ,

, , ,

0
1,..., , 1,...,

j t j t j t

j t j t j t

P P u
t T j N

Rd u Ru

−− − =
= =

−  

 (31) 

Also, model (1) is written as Equation (32) (a convex 

model) [11]: 

( )
1 ,..,

1

min (a)

s.t. (b)

, 1,..., (c)

T

j
x x

T

j j

j

j

f x

A x b

x j j T

=

=

 =

  (32) 

Cost function in Equation (33) is a convex function [11]: 

( ) ( )
1

T

j j j

j

f x f x
=

=  (33) 

 

4.3.2. The General Approach to ALR 

The augmented Lagrange function can be created as 

follows [11]: 

( ) ( )
1

1 1

,

2

T
T

j j j j

j

T
T T

j j j j

j j

L x f x A x b

r
A x b A x b

 
=

= =

 
= + − + 

 
 

   
+ − −   

   
   



 

 (34) 

Also, dual function is shown as follows [11]: 

( ) ( )
, ,
min , (a)

s.t. , 1, , (b)

i T

j
x x

j j

g L x

x j T

 =

 =
 (35) 

while, 
1m

jA R   is the Lagrange coefficient due to 

Equation (32)b, r is a penalty amount and 0r  . Similarly, 

the dual model is represented as follows [11]: 

( )max
m lR

g





 (36) 

If the problem can be a convex operational problem, 

there is no problem between the principal subject and the 

dual, so Equations (36) and (30) are perfectly equivalent. 

Due to the optimization conditions, as following [11]: 

( ) ( )( )

*

1

* * *

1
0, 1,

T

j jj

TT
xj j j j jj

A x

f x A r A x b j T

=

=




 + + − = =





 (37) 

We can easily obtain the optimal solution: 

( ) ( )

( )( ) ( )

1

1 1 1

1

,
i

k k T
x j xj j j

Tk k k T k
j j xj j jj

L x f x A

A x b f x A



 

+

+ + +

=

 =  +

+ − =  +
 (38) 

So, Lagrange coefficients can be updated with Equations 

(1)-(39) [11]: 

1 1

1

T
k k k

j j

j

r A x b + +

=

 
= + − 

 
 
  (39) 

The stop condition can be defined small enough if the 

optimal KKT conditions are not possible, such that [11]: 

( )1 1 1

1 1

T T
k k T k

j j xj j j

j j

A x b f x A  + + +

= =

− +  +    (40) 

where, ε is a definite accuracy.  

 

5. SEMIDEFINITE PROGRAMMINGSOLUTION 

OF ED 

A method involving the formulation of integrated 

semidefinite programming (SDP) of various ED models is 

proposed through objective function analysis in this 

section. The subject of ED is shown as follows [12]: 

( ) ( )
1

min
P

j j

j

C P C P
=

=  (41) 

( )  11
, , ,

TP

j D L Pj
P P P P P P P

=
= + =  (42) 

min max 1,j j jP P P j p  =  (43) 

The transmission loss is earned utilizing the Kron’s 

loss as following [12]: 

( ) 01 00

1 1 1

P P P

L j ji i j j j

j i j

P P P B P B P B
= = =

= + + +   (44) 

where, jiB , 01jB and 00jB   are the coefficients B. In 

common ED model management, the objective function is 

expressed by second-class polynomial functions. Entire 

fuel cost, C(P) can be explained as [12]: 

( ) 2

1

P

j j j j j

j

C P a p b P C
=

= + +  (45) 

where, jP is the active product power from the power plant 

jth, and ja , jb  and jC  are the corresponding fuel cost 

factors. Thus, it completes the practical problem 

considered in this chapter, and presents three properties of 

thermal power production power plants that apply non-

convexity and non-differentiation to the cost function 

performance. 
 

6. CO-PRODUCTION SCHEME FUEL COST  

A contributed cycle power plant includes of one or 

more gas and steam turbines. The fuel cost is non-smooth 

and non- derivative [13]: 
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( )
( )

( )

( )

min
1 1 1

2 2 1 2

max
1

, a

, b

, c

j j j j j j

j j j j j j j j

jq j jq jq j j

b P C P P X

C P b P C X P X

b P C X P P−

 +  


= +  


+  

 (46) 

while, 1   jX is the product output of power plant j when that 

changes from reconfiguration j to j + 1. 

Generation power plants may action on several fuel 

sources, making it economically viable to use a special fuel 

for a set of output powers. For this state, the objective 

function is expressed to show the combination of 

acceptable fuel options as several convex second-class 

functions.  This complicates determining the most cost-

effective type of fuel because the ED model is now 

discontinuous [14]. The objective function for fuel types q 

can be shown as following [15]: 

( )

( )

( )

( )

2 min
1 1 1

2
2 2 1 2

2 max
1

, a

, b

, c

j j j j j j

j j j j j j j j

jq j jq jq j j

b P C P P X

C P b P C X P X

b P C X P P−

 +  



= +  


+  

 (47) 

The objective function for power plant j is modeled by 

the point loading of the valve by adding an iterative 

modified sine component to the second-class objective 

function [16]: 

( ) ( ) ( )( )2 minsinj j j j j j j j j j jC P a P b P C d e P P= + + + −  (48) 

 

7. MODEL DECOMPOSITION 

The separable structure in optimization models breaks 

down large models to a number of smaller sub-problems 

that are easier to calculate. Problem analysis is based on 

objective function or limitations. The superiorities of these 

analyzes are used to solve ED subjects, but they are 

focused on the scope of limitation analysis. Although, the 

observation represents that they are distinguishable 

between places of non-differentiation in terms of 

performance. Therefore, the function domain can be 

subdivided into subdomains under points of non-

differentiability. This makes it possible to periodically 

break down the function into sub-functions whose 

domains are divided into subdomains, thus eliminating the 

model of non-derivative. To show this, a non-smooth and 

non-convex objective function ( )f   represented in the 

operational range 
max min[ , ]x x = , with n-1 non-

differentiable point, 1 2 1  , , , n   − . The domain f (χ) can 

be divided into n smaller ranges Ω  i along the points of 

non-derivative [12].   

1, , 1, ,j j j j n −
  = =   (49) 

where, 
min  j =  and 

max
j = , also, suppose that 

every small range Ω  j  is related to a sub-function, ( ) ,jf   

for example [12]: 

( ) ( ) :j jf f x =                                                        (50)                                                                                                                      

Also, we consider introduction vector  1      , , ,T
ny y y=   

where  Ω  j jy  =  . As a result [12]: 

( ) ( )
1

n

j j

j

f f y
=

=  (51) 

1
1

n T
jj

y y
=

= =  (52) 

subject to the complementarity limitation [12], 

. 0,j iy y j i=   (53) 

while, is equal to the l0-norm cardinality limitation: 

0
1y =  (54) 

It means that a thermal power plant by χ output is 

divided to smaller power plants, but just one of these 

smaller power plants can be active at the same time. 

Assume a generating power plant i with output iP , the 

number of fuel options in , and a related objective function 

( )j jC P  represented by (80). The generating power plant 

can be decomposed by the number of outputs 

,  1, ,jk jP k n=   to the number of  in sub-output power 

plants, whose operating range Ω  jk is considered between 

the points non-differentiability jk  from ( )j jC P [12]: 

 1jk j jk i jkp j − =    (55) 

Introducing the vector 1, ,T
j j jqP P P =   , we write [12]: 

1

1 (a)

, (b)

T
lj

m

j jk jk jkk

P P

P P P
=

=

= 
 (56) 

By complementarity limitation [12], 

. 0, , , 1, ,jr js jP P r r s n=  =  (57) 

or equivalent, with a cardinality limitation [12],   

0
1lp =  (58) 

However [12], 

( ) ( )
1

in

j j jk jk

k

C P C P
=

  (59) 

where, 

( ) 2
jk kj jk jk jk jk jkC P a P b P c= + +  (60) 

Also, the sub-functions ( ) jk jkC P  are convex   0jka  . A 

polynomial estimation is considered for modeling the 

CCCP. The sub-functions are written as following [12]: 
2

ik i ik i ika P b P c+ +  (61) 

Different surrogate functions are utilized in the 

literature for the modified sine element of Equation (81). 

These methods are simple but significantly different from 

the approximate point. A multi-point linearization 

approach eliminates this shortcoming but increases the 

size of the problem.  

Assume that the sine part of the function corrected by 

Equation (81) for the ith generating power plant has ni− 1 

point of non-derivative, , 1,..., 1jk jk n = − ;

min max
j jk jP P   earned by solving the problem [12]: 
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( )( )minsin 0j j je P P− =  (62) 

to give, 

min , 1,..., 1jk j j
j

k
P k n

e


 = + = −  (63) 

By applying the LSE estimation, the sub-functions are 

proposed for the rectified sine function as follows [12]: 
2 min

1 2 1 1

2
2 1 2 1 2

2 max
1

, (a)

, (b)

, (c)

     

j j j

j j j j j j j j

j j j i j j j j

jn j in j in inj j j

P P P P

P P P

P P P P

   

    

    −

+ +  

+ +  

+ +  

 (64) 

Merge the LSE estimation in Equation (64) by the 

second-class term, we obtain the sub-function for the valve 

point load objective function as follows [12]: 

( )

( )

( )

( )

2 min
1 1 1 1

2
2 2 2 1 2

2 max
1

, a

, b

, c
j j j j

j j j j j j j j

j j j j j j j j j j

in j in j in in j j

a P b P C P P

C P a P b P C P

b P b P C P P



 

 −

 + +  



= + +  


+ +  

 (65) 

That        jk j jka a = +  ,      jk j jkb b = +  ,        jk j jkc c = +  ,   

1,  , jk n=    using χjk points in (65), the decomposition is 

in the form Equations (55)-(60). To better estimate, a 

higher degree polynomial is proposed. For the 4th degree 

polynomial estimation, the sub-function kth of the 

modified sine function between 1jk j jkP −   is shown 

as follows [12]: 
4 3 2

1 ,  jk j jk j jk j jk j jk jk j jku P P P P P     −+ + + +    (66) 

And by substituting 
2

jk jkW P= , each of the sub-

functions is reduced to a second-class function in jkW  and

jkP , such as [12]: 

( ) 2

2

,

,

jk jk jk jk jk jk jk jk

jk jk jk jk jk

C P W u W W P

P P



  

= + +

+ + +
 (67) 

With second-class limitation [12]. 
2

jk jkW P=  (68) 

 

8. SEMIDEFINITE PROGRAMMING (SDP) 

In this section, one of the SDP forms is considered as 

follows [12]: 

0min  ,         (a)

subject to , 1, , (b)

0  (c)

j j

A X

A X b j m

X

 

  =



 (69) 

The SDP dual problem is as follows [12]: 

0

1

max  ,         (a)

subject to , (b)
m

m
j j

j

b y

y A A y R
=

 

 
 (70) 

while, 
nX S  is the decision vector, 

nb R   and  

0 , n
iA A S . The 

nS can be the set of entire symmetric 

matrices in n nR  . 

By introducing a variable of the semidefinite matrix in 

direct formulation as SDP in some subjects, it does not 

always have a convex SDP model. The causes given for it 

consist the possible non-convexity in the limitation set (for 

example rank limitation, disjoint limitation set) or in the 

cost function. Therefore, the obtained SDP model is hard 

to apply in the best optimal solution. The SDP subject can 

be relaxed by embedding a non-convex limitation in a 

larger convex limitation set. Assume the following 

relation. 

( )* min
x

f g x


=  (71) 

The problem becomes relaxed [12]: 

( )* min
x

f g x


=  (72) 

Since the ED model is quadratically constrained 

second-class model (QCQP), its LR is proposed to 

represent the topic. Assume the QCQP model [12]: 

( )

( )

0min         (a)

subject to 0 1, , (b)j

f x

f x j p =
 (73) 

( )

( )
1

2 (a)

(b)

(c)

T T
j j j j

T

T
j

f x x A x b x c

x M x

Tr M xx

= + +

=

=

 (74) 

,
1

j j

j T
j j

A b x
M x

b C

   
= =   
    

 (75)                  

The model takes SDP description as following [12]: 

0min  ,         (a)

subject to , 0, 1, , (b)

0  (c)

i

M X

M X i p

X

 

  =



 (76) 

( ); 1TX xx rank X= =  (77) 

The QCQP subject Equation (73) can be equivalent for 

the SDP model n Equation (76) with the rank limit, rank 

(X) = 1. Limits the rank of non-convexity to the SDP 

model.  

Removing the rank limitation in the SDP model 

guarantees convexity, however the result for relaxing 

subject is no longer equal to the main model. Because the 

application of rank limitations is essential for equal 

subject, it is necessary to correct the rank limitation. A 

convex reformulation that imposes a limitation, called 

convex iteration. This formulization decreases the non-

convex rank-constrained SDP model [12]. 

( )

0min  ,         (a)

subject to , , 1, , (b)

0, 1  (c)

j j

A X

A X b j q

X rank X

 

 = =

 =

 (78) 

For a convex subject [12]: 
*

0min  . ,        (a)

subject to , , 1, , (b)

0 (c)

j j

A X w W X

A X b j q

X

+  

  =



 (79) 

where, the matrix with direction 
*W  is the best answer 

for a convex model [12]: 
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*min  ,        (a)

subject to , 1, 1, , (b)

0 (c)

W X

I W q j q

I W

 

 = − =

 

 (80) 

where, *X  is the last answer of the convex model in 

Equation (79). Repeat the method and solve two convex 

models alternately when the stop scale 
* *, 0X W =  is 

obtained. The optimization model in Equation (79) starts 

with 
*W I= . The like approach can be the nuclear norm 

or trace heuristic method. It is also represented that the 

trace heuristic method can be the first iteration of the 

convex iteration method. So, when there is no solution for 

rank 1, we have both methods to provide a resource. 

Branches and boundaries for SDP are considered to be 

bound by the combined result of relaxation approaches, 

i.e., the decomposition of the non-convex term and the 

replacement of the convex iteration for the rank limitation 

obtains the convex ED model of a piece for global 

optimization. However, this does not apply to cases with 

piecewise non-convex functions. Therefore, an alternative 

path is needed to obtain optimal solutions such as non-

convex models. This method solves the SDP model for the 

optimal solution. According to the breakdown of all 

objective functions, the ED model in Equation (41) can be 

written as follows [12]: 

2

1 1

1 1

;

min
1

1

min max

min (a)

s.t. (b)

. 0, ; 1, ; , 1, (c)

, 1, , (d)

, 1, , , 1, , (e)

i

i

j

nm

ji ji ji ji ji

j i

nm

y D

j j

jr js j

n

ji j

i

ji ji ji i

a P b P c

P P

P P r s j m r s n

P P j m

P P P j m i n

= =

= =

=

 + +
 

=

=  = =

 =

  = =







 (81) 

0 0 0

1

1

0

min

min  2 (a)

s.t. 1 (b)

1; 1, , ; (c)

1 ; 1, , (d)

; 1, , (e)

m
T T
j j j j j j

j

m
T

j D

j

j

T
j j

l u
j j j

x A x b x c

x P

x j m

x P j m

x j m 

=

=

+ +

=

 =

 =

  =





 (82) 

The positive semi-definite symmetric matrices jX  for 

each power plant i is as follows [12]: 

( )

;
1 1 1

1,

T T
j j jj j

j T
j

j

x x xx x
X

x

rank X

    
 = =   
      

=

 (83) 

Therefore, the SDP formula of the problem in Equation 

(81) can be written as follows [12]: 

( )

( )

0

1

1

0

min  , (a)

s.t. , 0, 1, , (b)

0, 1, ,1 1, 1, , (c)

1, 1, 1, , (d)

m

j j

j

m

ji j c

j

j j j j

j j

A X

A X j n

X X n n j m

rank X x j m

=

=

 

  =

 + = =

= = =



  (84) 

The jiA  matrix is constructed as follows [12]: 

, 0,1, , ; 0,1, ,
ji ji

ji cT
ji ji

A b
A j m i n

b C

 
= = = 
  

 (85) 

By using convex iteration, we will have [12]: 

( *
0

1 1

1

min ,         (a)

subject to , 0, 1, , (b)

0 (c)

m m

j j j j

j j

m

ij j c

j

i

A X G W

A X i n

X


= =

=

 +  

  =



 

  (86) 

* *
0

1

min  , ,        (a)

subject to , 1 (b)

0 (c)

n

j j j j

j

j j

j

A X G W

I W n

I W


=

  +  

  −

 



 (87) 

➢ Example: In Table 1 and Figure 1 [23], the information 

of power plants and hourly load demand are shown, 

respectively. Solve the DED problem for these generators 

first using the MINLP method presented in section 1.2. 

Then solve this problem using the convex optimization 

method presented in section 1.8.3 and compare the results. 

 
Table 1. The data for four power plants [23] 

 

gi ai bi  ci di  ei fi (kg) 

min
,g iP  

(MW) 

max
,g iP  

(MW) 

RUi  

(MW) 

RDi  

(MW) 

1 0.12 14.8 89 1.2 -5 3 28 200 40 40 

2 0.17 16.57 83 2.3 -4.24 6.09 20 290 30 30 

3 0.15 15.55 100 1.1 -2.15 5.69 30 190 30 30 

4 0.19 16.21 70 1.1 -3.99 6.2 20 260 50 50 

 

 
 

Figure 1. The hourly demand [23] 

 

 

Figures 2 and 3 show the results for MINLP and 

convex optimization methods, respectively. Comparing 

these results, we see that in the MINLP method, the power 

of power plant 3 is different from 20h to 24 h compared to 

the convex optimization method. However, in other hours 
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and at other power plants, there is little difference between 

the tw1o methods. The cost function value for the MINLP 

method is 648019.0591$. This is 647964.4601$ for a 

convex optimization method. Therefore, the convex 

optimization method has a better performance than the 

nonlinear model, which represents the performance of the 

convex model to calculate the DED model. 

 

 
 

Figure 2. The hourly thermal power plant power schedules with MINLP 

method 

 

 
 

Figure 3. The hourly thermal power plant power schedules with convex 

optimization method 

 

9. CONCLUSION 

In this chapter, the solution of the ED model using 

Lagrange relaxation methods and convex optimization is 

investigated. The Lagrange relaxation method is divided 

into several small sub-problems to divide an optimization 

model. To obtain the problems of the Lagrange relaxation 

method, the ALR method has been strengthened, 

developed for precise convergence and convexity. This is 

because the ALR considers an additional second-class 

penalty, the benefit of which is that the dual model can be 

detected on the main problem in relatively mild conditions. 

Also, the DQAM method is proposed for the convex 

optimization of the ED subject. Global convergence for 

convex modeling has also been proven and successfully 

utilized in calculations. Also, two MINLP methods and a 

convex optimization method are implemented in Gam’s 

software. The results represent the better performance of 

the convex optimization method in solving the DED 

problem.  
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