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Abstract- Modeling by differential equations is an 
essential competence required in mathematics and 
physics to perceive well many real problems. Several 
studies have shown that the acquisition of this 
competence by secondary school students (17-19 years 
old) is a task that poses several types of difficulties. In 
this work, we are interested in exploring the attitudes of 
teachers of mathematics and physics in secondary school 
towards the difficulties encountered by students in 
implementing modeling by differential equations. For this 
purpose, we conducted a survey through a questionnaire 
among teachers of the two disciplines. The results 
obtained show that the attitudes of teachers of both 
disciplines are not correlated to seniority in teaching. But 
clear correlations were observed, at the p<0.05 level of 
statistical significance, in teachers' attitudes towards the 
difficulties encountered in the different steps of the 
modeling. A principal component analysis was also 
performed, and it showed that the teacher's attitude 
towards the step of validating the results of solving the 
differential equations can account for more than 66% of 
the total variance.  

  
Keywords: Modeling, Modeling Cycle, Difficulties in 
Modeling, Attitudes, Differential Equation. 

 
1. INTRODUCTION                                                                         

Since their genesis, differential equations, denoted in 
the sequel by DE, have become an essential tool for the 
study of many problems from various fields. An 
overview on this point can be obtained in [1], for 
example, and in the references therein. Thus, the study of 
DE has been included in secondary school 
curriculum, and many efforts have been deployed by 
researchers concerning the instruction of DE. Despite its 
importance and frequent applications, teaching and 
learning DE is still considered one of the most difficult, 
especially at the pre-university level as stated recently in 
[2] and [3]. Exploring efficient and innovative strategies 
for teaching differential equations had remained a focus 
in mathematics education and [4]. 

Historically, DE teaching has been influenced by 
various attempts to reform pedagogical practices that 
were undertaken at the beginning of the last century. 
Many authors have called for the use of problems that are 
actually interesting and relevant to students. At that time, 
applications were seen as a tool to enhance the learning 
process. They were used with the aim of concretizing the 
issues and motivating students, rather than preparing 
them to deal with real-life problems. But for Blum [5], 
mathematics learning should be sustained by connecting 
to real life. Students should learn to understand their 
environment and real-life situations with the help of 
mathematics and to develop general mathematical skills. 
In addition, this mutual transition between reality and 
mathematics is an essential prerequisite for being open to 
new situations.  

The integration of teaching of mathematics through 
problems has led many authors to differentiate between 
application and modeling. In application, the activity 
focuses on moving from mathematics to the real-world 
context and mainly to products. In modeling the emphasis 
is on the complementarity of mutual transitions between 
reality and mathematics [6].  This does not imply that 
mathematics is unreal, but it is considered an area which 
provides tools for finding stable answers to questions 
posed in real situations. 

Blum justifies the introduction of mathematical 
modeling in education by the following four types of 
considerations [7]. 
• Pragmatic: To understand and master real-world 
situations, it is necessary to establish a clear and strong 
link with relevant application and modeling cases. 
• Formal: Strategic mathematical skills can also be 
developed by modeling exercises. In this respect, we can 
cite the example of mathematical reasoning which can be 
developed through admissibility checks. However, the 
appropriation of modeling competence can only occur by 
examining appropriately chosen practical and modeling 
situations. 
• Cultural: Dealing with real-world situations through 
mathematical tools is crucial for developing a correct 
view on mathematics as a science in the broadest sense. 



International Journal on “Technical and Physical Problems of Engineering” (IJTPE), Iss. 57, Vol. 15, No. 4, Dec. 2023 

279 

Indeed, modeling activities confer a cultural aspect to 
mathematics. 
• Psychological: Involving examples from various fields 
can be a good factor in stimulating students' engagement 
with mathematics, demonstrating the appropriateness of 
the mathematical content and structuring it in a manner 
that maximizes comprehension. 

In spite of the important place of modeling, classroom 
observations reveal little implementation of modeling in 
courses and class exams, as indicated in [8]. There are 
many factors that may be behind this situation. Modeling 
has been introduced in the curricula for a very short time. 
As a result, many teachers did not take advantage of the 
training to acquire the skills needed to teach modeling. 
Therefore, many teachers do not know how to handle 
modeling situations in their classroom or how to proceed 
when students are working on such situations. In 2022, 
the authors in [9] showed that adequate choice of 
cognitive activities involved in the learning of DE is a 
determining factor for the ease of transfer of learning on 
this notion. They observed several types of difficulties in 
secondary school students in solving certain differential 
equations from the field of physics. 

In his study aiming to understand the difficulties and 
weaknesses of students in their learning of DE, Arslan 
[10] concluded that despite the fact that some students did 
quite well in algebraic solutions, they did not understand 
the related concepts well, and they had clear difficulties 
in relation to these concepts. This failure in DE learning 
has also been noted by Rowland [11] in a study 
conducted with students of first-year undergraduate 
engineering students. He concluded that few students 
seemed to perceive that the units of each term of first-
order ordinary differential equations must be similar, or if 
they did, they do not succeed in applying this information 
when it is needed. In addition, not many students were in 
a position to determine the units of a proportionality 
factor in a basic equation.  

In his thesis focused on differential equations as a 
means of mathematical modeling in secondary school 
physics and mathematics, Rodriguez [12] explored the 
types of tasks that students are asked to perform, and the 
kinds of techniques they are expected to use, when 
modeling situations using differential equations. The 
author found that the existing approach in the 
mathematics classroom was, most of the time, reduced to 
mathematical tasks only, such as solving differential 
equations of the form y'=ay+b, finding a particular 
solution that satisfies an initial condition, and sometimes 
studying the solution function. He also observed that 
contrary to the intention of the programs on the Physics-
Mathematics interaction, students have difficulty using 
techniques learned in Mathematics class when setting up 
the experimental situation in Physics. 

In a study, carried out with some students in a higher-
level mathematics course, on the evidence about the 
resources that students use when establishing 
relationships between a contextual situation and an 
ordinary differential equation, Camacho-Machin and 
Guerrero-Ortiz [13] deduced that the difficulties in 

interpretation are due to the literal relationship that 
students establish between their mental model of the 
development of a phenomenon and its mathematical 
representations. Sijmekens and other authors [14] 
investigated the influence of the employment of 
contextualized situations in the instruction of differential 
equations on the capacity of engineering students to form 
and interpret differential equations. This study reveals 
that by providing sufficiently contextualized problems, 
students' skills in constructing and interpreting 
differential equations are enhanced. Furthermore, it has 
been pointed out that students' progress in these skills has 
no effect on their achievement of procedural knowledge. 

The failures observed in all the previous studies, 
which concern several levels of education attest that 
modeling is a difficult competence not only to acquire by 
students but also to be implemented by teachers. 
Teaching mathematical modeling in the school 
environment is a cognitively challenging task as 
confirmed in many studies as [15] for instance. Hence, 
mathematics teachers should be empowered with 
different skills, disciplinary and non-disciplinary 
knowledge, task and teaching proposals, as well as 
appropriate attitudes and conceptions to deal with 
modeling in an appropriate way in class. 

The literature on the issue of teacher obstacles 
repeatedly refers to the time factor. Teachers need more 
time to adapt tasks evoked by modeling to the needs of 
the classroom [16]. In addition, teaching is becoming 
more demanding. Teachers need additional skills to deal 
with this new approach of teaching, especially when the 
context is from a subject they have not studied. 
Performance assessment is also a problem, as teachers 
feel overwhelmed by the complexity of the modeling 
process. 

It is also important to note that in studies conducted 
[17] and   related to teachers' attitudes, it was revealed 
that teachers do not consider modeling as a mathematical 
activity. This situation prompts many researchers to think 
about how to promote the status of modeling in education 
contexts. For example, Winther [18] investigated the 
conditions of the implementation of modeling activities 
in physical science teaching and he showed that it is 
necessary that the students are well accompanied to help 
them overcome difficulties that arise during the 
establishment of a modeling process. 

Given this situation, we focus in this work on the 
following problematic: how secondary school 
mathematics and physics teachers perceive students' 
difficulties in implementing the differential equations 
modeling process?  

In relation to this problem, we set the following 
issues:  
1. What are the attitudes of mathematics and physics 
teachers regarding difficulties in modeling with 
differential equations in secondary school? 
2. Are there disparities between the attitudes of 
mathematics and physics teachers regarding difficulties in 
modeling with differential equations in secondary school? 
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2. THEORETICAL FRAMEWORK 
In the literature on modeling and applications there 

are many different modeling cycles. The choice of one 
representation or another depends on the objectives of the 
analysis [7]. From a cognitive viewpoint, the seven-step 
process developed by Blum and Leib in [19] is 
considered to be particularly useful. It is a mixture of 
models from applied mathematics and, linguistics, and 
cognitive psychology. According to the cyclical scheme 
of Blum and Leib [19], the modeling process starts from a 
realistic situation, which involves an original problematic 
situation that is approached using mathematical 
resources. Afterwards, this situation is converted into a 
conceptual model in accordance with the modelers’ 
background, experience, objectives and interests.  

Thus, a mental portrait of the situation is produced 
which is the result of an individual perception of reality 
[20]. The resulting simplification and elucidation of the 
mental representation generates a real model [21]. This 
involves the identification of the problem, which consists 
of the choice between several possible models, and the 
experimental determination of the parameters that 
intervene as assumptions of the model. According to 
Henry, this task is quite important. In fact, he states that 
"if we want to introduce a real experimental approach in 
mathematics, we should not neglect the first step of 
modeling at the level of the concrete situation: the 
observation of the real situation" Henry [22]. 

Then a process of mathematization converts the 
appropriate items, relations and hypotheses of the real 
model into a mathematical representation, yielding a 
mathematical model that can be helpful in addressing the 
perceived problem [7]. Mathematical techniques are 
employed to solve the mathematical problem in the 
developed model and to achieve a result. Yet, modeling 
in mathematics is not restricted to moving a problem 
from reality to a mathematical problem, it also includes 
the reverse work. That is to say, to put in confrontation 
the mathematical reasoning and the reality. Consequently, 
the mathematical findings must be interpreted in the light 
of the context of the original real-life problem [23]. 
Afterwards, the whole process must be subjected to 
validation. This means the evaluation of the degree of 
approximation of the theoretical results, obtained with the 
corresponding experimental values, and the decision 
whether the model is well suited for the situation under 
study or not. If the chosen solution or procedure is not 
satisfactory, some steps or the entire process must be 
redone with a modified or totally new model. At the end, 
the solution to the initial real-world problem will be 
exhibited. 

According to [7], the ability to carry out these steps is 
linked to some skills or sub-skills such as the correct 
perception of the given real situation or the explanation of 
mathematical results in relation to the situation studied. 
Models are not only aimed at description and explanation, 
but also at prediction and even creation of real-world 
elements. The capacity to perform each sub-process can 
be viewed as a sub- competency of modeling [24]. For 
Blum [7] modeling competence refers to the ability to 

build, use, or adapt mathematical models by performing 
the process steps in an appropriate manner, as well as 
analyzing or confronting given models. Modeling 
competence can then be understood as a mixture of 
several different sub-competences. In Table 1, we provide 
sub-competencies characterized by Greefrath and 
Vorholter [23] in accordance with the modeling cycle of 
Blum and Leib [19]. 

 
Table 1. Sub categories of modeling 

 

Sub-competency Explanation 

Understanding 
Students represent the problematic situation and form 

their special mental model. This allows them to 
acquire an understanding of the issue 

Simplifying Students distinguish between important and irrelevant 
data about a realistic situation 

Mathematizing 
Students convert simplified real-life situations into 
equations, figures, diagrams, functions, etc., thus 

forming a mathematical model 

Working 
Mathematically 

Students employ some heuristic approaches and use 
their mathematical background to solve the 

mathematical problem 

Interpreting 
The students transfer the results deduced from the 
model to the real context and thus obtain tangible 

results 

Validating Students examine the appropriateness of the actual 
findings in the situation model 

Exposing 
Students match the answers found in the model with 

the actual data and thus develop an answer to the main 
question 

 
Taking into account the tasks in Table 1, a 

considerable amount of research has been undertaken on 
errors, obstacles or difficulties involved in the modeling 
processes. In particular, Klock and Siller [24] developed 
an interesting list, from a practical point of view, of 
difficulties related to each of the following five 
categories: 
1. Developing a model of the actual world 
2. Development of a mathematical model 
3. Carrying out mathematical work.  
4. Interpreting 
5. Validating 

 
3. METHODOLOGY 

This research is of an exploratory type and aims to 
present as detailed as possible a description of the 
attitudes of mathematics and physics teachers regarding 
difficulties in modeling with differential equations. So, it 
is appropriate to use a mixed approach that combines 
qualitative analysis supported by the literature review 
carried out and quantitative analysis using statistical 
tools. To explore the attitudes of teachers, we chose to 
survey teachers of mathematics and physics who actually 
taught in final classes in science or technology in 
secondary school. In these classes, the mathematics and 
physics curricula stipulate that modeling by means of 
differential equations is a main skill that students must 
acquire [26, 27]. 

The survey is carried out using a questionnaire (Table 
2) whose development of items was based on the 
conclusions summarized previously and which enabled us 
to identify the following hypotheses: 
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1. The teachers of the two disciplines do not have the 
same representations on the modeling steps using 
differential equations. 
2. The teachers of the two disciplines do not have the 
same appreciation of the difficulties encountered by the 
students during the implementation of the modeling. 

For each of the five steps listed at the end of the 
previous section, we have suggested a possible source of 
difficulties that students may encounter. Each possibility 
represents a variable denoted in the sequel by Vi 
(i=1,…,5). 

 
Table 2. The questionnaire administered 

 

Discipline taught Mathematics  
Physics  

Length of service as a teacher  ) by years) 

Less than 5 

B
etw

een 
 5 and 10 

M
ore than 10 

Number of school years of teaching of 
scientific final classes 

Less than 3 

M
ore than 3 

and 
Less than 5 

M
ore than 5 

List of possible difficulties related to 
each step of the modeling process 

Strongly 
disagree 

N
ot agree 

N
eutral 

A
gree 

Strongly 
agree 

1. In forming a model of the real world, 
students fail to identify relevant 

variables 
     

Students fail to represent the situations 
by a differential equation because they 

are unable to establish the dependencies 
between the variables. 

     

The difficulties encountered by students 
in solving the differential equation, 

representing the situation studied, are 
due to the use of inadequate strategies or 

algorithms 

     

In the interpretation step, students fail to 
identify the correct meaning of the 
solution of the differential equation 

     

Students fail to validate the formed 
mathematical model (ED) because they 

do not identify the influence of real-
world constraints on the mathematical 

results 

     

 
To validate the content of the questionnaire, it was 

presented to three researchers in the field of mathematics 
education and then administered to six teachers, 3 of 
mathematics and 3 of physics, working in different 
secondary schools who had already teaching final classes 
(last class in secondary school). Following this pre-test, 
minor adjustments in the wording of certain questions 
were made to the questionnaire and then administered 
online in March 2023. The questionnaire was distributed 
online, with the help of some education inspectors, within 
group’s teachers working in different schools at the two 
Regional Education and Training Academies of Rabat 
Sale Kenitra and Tangier Tetouan Al Hoceima.  

The choice of an online questionnaire has the 
advantage of allowing the anonymity of the respondents 
and moreover, they feel assured that they will not be 
exposed to a direct judgment on their answers [28]. The 

total number of teachers who completed the questionnaire 
was 70, evenly distributed over the two disciplines 
(mathematics and physics). It is important to emphasize 
that the data collection was limited to those teachers who 
declared to be familiar with the modeling steps. 
Professional specificities of the participants in terms of 
seniority in teaching and the number of years they have 
been in charge of final classes are described in Table 3. 

 
Table 3. Professional characteristics of the sample 

 

 Seniority in teaching Duration of teaching 
terminal classes 

Duration 
Less 
than 

5 years 

Between 
5 and 10 

years 

More 
 than 10 

years 

Less 
than 3 
years 

Betwee
n 3 and 
5 years 

More 
than 5 
years 

Mathematics 
teachers 3 16 16 10 3 22 

Physics teachers 2 8 25 5 5 25 
 

The answers to the questions are collected and coded 
according to a quantitative scale from 1 to 5 on a 
gradation between "Strongly disagree" and "Strongly 
agree" which corresponds to a Likert scale often used in 
research to measure attitudes and cognitive constructs. 
The choice of an odd scale also gives the respondent the 
possibility of positioning himself on a central response 
modality. The table of responses summarizes, for each 
individual in a row, the coded values of his or her 
responses to the questions, in columns. The objective is 
to analyze the table in order to identify the main design 
orientations that emerge from the set of responses, i.e., 
coherent sets of responses reflecting particular designs. 
We will carry out a multivariate statistical analysis to 
study the structure of the responses. The synthesis carried 
out makes it possible to highlight the redundancies or the 
possible correlations between questions, for which we 
obtain globally similar (positive correlation) or dissimilar 
(negative correlation) answers [29]. Data processing is 
performed using SPSS software. 

 
4. RESULTS 

 
4.1. Univariate Descriptives 

In order to get a first view of the population of 
respondents, we analyzed the responses using simple 
descriptive statistics. 
 

Table 4. Descriptive data 
 

 Discipline N Mean Std. Deviation Std. Error Mean 

V1 
Maths 35 3.1142 0.86675 0.146 

Physics 35 3.0857 1.26889 0.214 

V2 
Maths 35 3.3142 0.99325 0.167 

Physics 35 3.1714 1.12421 0.190 

V3 
Maths 35 3.1714 0.98475 0.166 

Physics 35 2.9428 1.10992 0.187 

V4 
Maths 35 3.1140 1.0784 0.182 

Physics 35 3.3140 1.3234 0.223 

V5 
Maths 35 3.4570 1.0387 0.175 

Physics 35 3.200 1.2078 0.204 
 

It is interesting to note that these results show that the 
means of each variable are almost the same for both 
groups of teachers. However, we should not rely directly 
on this appearance. Let us then carry out a test of the 
means using the t-test of two independent samples. 
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4.2. Comparison of Means 
We recall that t-test is a statistical test employed for 

comparing the means of two distinct groups. When the 
significance level is small (p<0.05), we can refuse the 
hypothesis that the two groups come from the same 
population and conclude that the two means do not refer 
to the same population. To undertake the t-test, it is 
necessary to assess the homogeneity of variances for the 
samples. This can be given by the use of Levene's test.  

 
Table 5. Independent samples test 

 

 
4.3. Bivariate Analysis 

The cross-tabulation of the variables related to the 
modeling steps by the differential equations allowed to 
highlight some significant correlations, at the 0.01 level 
(2-tailed), as it is shown in Table 6. 

In view of these results, which reveal certain 
correlations between the variables studied, we can think 
that it would be interesting to further process the data. To 
do this, we have carried out a principal component 
analysis (PCA).  
 
4.4. PCA Analysis 

In order to highlight the different attitudes of teachers 
according to the representations that they let appear in 
their answers to the questionnaire, we carried out a 
principal component analysis which allows a multivariate 
analysis of all the variables. A PCA can only be 

implemented with quantitative variables or with 
hierarchical variables measured, for example, using a 
Likert scale. The principle of PCA is to minimize the 
number of variables. The new variables are called factors. 
The factors are linear functions of the initial variables.  

In PCA, the adequacy of the sample must first be 
examined. To do this, two tests can be administered: the 
Kaiser-Meyer-Olkin (KMO) test and Bartlett's test of 
sphericity. The first gives a proportion of the variance 
between variables that could be a common variance. It is 
scored from zero to one, with zero being inappropriate, 
while a value close to one is appropriate. For the Bartlett 
test, the observed correlation matrix is compared to the 
identity matrix. In general, KMO values of at least 0.50 
and p<0.05 for the Bartlett test of sphericity are 
considered acceptable.  

 
Table 6. Correlations between variables 

 

 

Seniority 

Y
ears of 

teaching in 
term

inals 

V1 V2 V3 V4 V5 

Seniority 

Correlation 
Coefficient 1       

Sig. 
(2-tailed) .       

N 70       Y
ears of teaching 
in term

inals 

Correlation 
Coefficient 0.561** 1      

Sig.  
(2-tailed) 0 .      

N 70 70      

V1 

Correlation 
Coefficient -0.074 0.125 1     

Sig.  
(2-tailed) 0.544 0.301 .     

N 70 70 70     

V2 

Correlation 
Coefficient 0.059 0.210 0.566** 1    

Sig.  
(2-tailed) 0.628 0.081 0 .    

N 70 70 70 70    

V3 

Correlation 
Coefficient -0.057 0 0.462** 0.666** 1   

Sig.  
(2-tailed) 0.638 1 0 0 .   

N 70 70 70 70 70   

V4 

Correlation 
Coefficient 0.143 0.051 0.495** 0.470** 0.606** 1  

Sig.  
(2-tailed) 0.237 0.675 0 0 0 .  

N 70 70 70 70 70 70  

V5 

Correlation 
Coefficient 0.071 0.113 0.541** 0.551** 0.740** 0.673** 1 

Sig.  
(2-tailed) 0.558 0.351 0 0 0 0 . 

N 70 70 70 70 70 70 70 
 

Table 7. KMO and Bartlett's test 
 
 

KMO 0.825 

Bartlett's Test of Sphericity 
Approx. Chi-Square 169.361 

df 10 
Sig. 0.000 

 

 

Levene's 
Test for 

Equality of 
Variances 

t-test for Equality of Means 

F Sig. t df 
Sig. 
(2-

tailed) 

Mean 
Difference 

Std. Error 
Difference 

V1 

Equal 
variances   
assumed 

6.392 0.014 0.110 68 0.913 0.0285 0.2597 

Equal 
variances 

not assumed 
  0.110 60.05 0.913 0.0285 0.2597 

V2 

Equal 
variances 
assumed 

0.457 0.501 0.563 68 0.575 0.1428 0.2535 

Equal 
variances 

not assumed 
  0.563 66.98 0.575 0.1428 0.2535 

V3 

Equal 
variances 
assumed 

0.537 0.466 0.911 68 0.365 0.2285 0.2508 

Equal 
variances 

not assumed 
  0.911 67.04 0.365 0.2285 0.2508 

V4 

Equal 
variances 
assumed 

3.846 0.054 -0.693 68 0.491 -0.2000 .2886 

Equal 
variances 

not assumed 
  -0.693 65.33 0.491 -0.2000 0.2886 

V5 

Equal 
variances 
assumed 

1.354 0.249 0.955 68 0.343 0.2571 0.2693 

Equal 
variances 

not assumed 
  0.955 66.51 0.343 0.2571 0.2693 
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We can then conclude that: 
• Since the KMO index is greater enough than 0.5, so all 
the items are factorable.  
• The Bartlett test revealed that the calculated p-value is 
below the 0.05 level of significance. 

Therefore, the hypothesis that there is no correlation 
significantly different from 0 between the variables 
should be rejected and the fact that there are correlations 
that are not all equal to zero should be retained. 
Concerning the reliability, calculation of the Cronbach's 
coefficient was performed in both cases, for all the items 
and considering only the variables Vi. We find the results 
in Table 8. 

 
Table 8. Cronbach Alpha 

 

Cronbach's Alpha N of Items 
0.807 7 
0.872 5 

 
Hence, the reliability of our questionnaire is quite 

satisfactory. Thus, all the items contribute to the 
reliability of the questionnaire and no purification is 
needed. By specifying that the PCA is run on all items 
without fixing previously the number of factors 
requested, we obtained the results reported in Table 9. 

 
Table 9. Total variance explained 

 C
om

ponent 

Initial Eigenvalues Extraction Sums of Squared 
Loadings 

Total % of 
Variance 

Cumulative 
% Total % of 

Variance 
Cumulative 

% 
1 3.322 66.441 66.441 3.32 66.441 66.441 
2 0.602 12.046 78.488 

 3 0.501 10.011 88.499 
4 0.354 7.087 95.586 
5 0.221 4.414 100.0 

 
Table 10. Component matrix 

 

 Component 
1 

Variable 1 0.728 
Variable 2 0.811 
Variable 3 0.855 
Variable 4 0.797 
Variable 5 0.876 

 
Under the Kaiser criterion (the eigenvalue is more 

than or equal to 1), only components with an eigenvalue 
greater than 1 are retained. Hence, factor 1 explains 
66.441% of the total variance.  With respect to this factor, 
the component matrix is as follows.  

 
5. DISCUSSION 

The results obtained show, first of all, that the 
averages are almost the same among the mathematics 
teachers and their physics counterparts for all the 
variables studied, namely the difficulties related to the 
modeling steps by differential equations. This means that 
the two groups share in some way the same attitudes 
regarding these difficulties. In addition, the deviations 
from the averages are also roughly equal. This result 
prompted us to perform a test for the means. Note that the 

degrees of freedom are high. This implies that the test 
performs well. Secondly, it reveals the following two 
cases. The first is manifested by the equality of variances 
for the two categories of teachers, which corresponds to a 
value of Levene's test with a p-value lower than 0.05, the 
value of t does not allow the hypothesis of equality of 
averages to be rejected. The attitudes towards the first 
step of modeling by differential equations are part of this 
first case, i.e. teachers of both disciplines share the same 
attitude on the fact that students are unable to identify the 
adequate variables in the formation of a model of the real 
world. However, the averages for this variable are close 
to 3. This means that both groups are neutral with respect 
to this hypothesis. 

The second case is where there is a difference in the 
variances of the two groups according to the values 
indicated by Levene's test. Here again, it is clear that 
there is no difference in averages that are significantly 
close to 3. This is interpreted by the fact that the two 
groups tend to be undecided about the difficulties 
encountered by the students in implementing differential 
equation modeling. This state of neutrality can be 
explained by many facts. On one hand, teaching 
mathematical modeling in the classroom is cognitively 
challenging as stated by many authors like [15], and [30] 
for instance. On the other, teaching modeling requires 
enough time to perform such tasks as observed by [16]. 

In studying the correlations between the different 
variables, the following remarks can be made from 
Table 6: 
• Contradictorily, there is no confirmed correlation 
between the number of years spent in service and the 
attitude on the difficulties that can emerge naturally in the 
process of modeling by the DE. This is more surprising 
when the same remark extends to the character of 
decorrelation which marks the number of years of 
practice with the final classes and the management of the 
difficulties noted with the students. 
• Positive correlations are quite clear between the 
different Vi variables. Sometimes this correlation is 
moderate as in the case of the attitude that the students 
fail to identify relevant variables in forming a model of 
the real world and all other variables. This is also the case 
for the attitudes on the fact that the students fail to 
represent the situations by a differential equation because 
they are unable to establish the dependencies between the 
variables with the difficulties that may arise in the steps 
of interpretation of the results from the resolution of the 
DE or during the validation of the model constructed. 

This last second point prompted us to implement a 
PCA with the aim of confirming the correlations 
observed in the bivariate analysis and, above all, to try to 
determine the principal factors that explain the variability 
in our sample. It should be noted that the verification of 
the statistical conditions necessary to carry out the PCA 
led to fairly satisfactory results for the KMO and 
Bartlett's Test. The striking result in this analysis, carried 
out without predefining the number of factors required, 
was that one principal component was responsible for 
more than 2/3 (about 66.441%) of the variance observed. 
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Referring to the results in Table 8, we see that the 
fifth variable 5 is the best represented according to the 
principal component. Therefore, as an interpretation of 
this principal component, we can say that the attitude that 
the students fail to validate the formed mathematical 
model (DE) because they do not identify the influence of 
real-world constraints on the mathematical results is 
responsible for the majority of the variances. This also 
confirms the fact that the values of the correlation 
coefficients of V5 with the other variables take the higher 
values in Table 5. 

 
6. CONCLUSION 

Modeling in the field of education has long become 
an essential asset for improving the learning of 
mathematics, and also for better understanding real 
phenomena. Under this vision, several efforts have been 
made to promote the acquisition of this essential skill. In 
particular, modeling by differential equations has taken a 
good part in the research work. Based on observations of 
difficulties in implementing the modeling process in 
teaching practices and learning processes, several authors 
have focused on the development of sub-competences 
related to modeling [24]. Consequently, the identification 
of the difficulties encountered by students has become 
more operational [25]. To understand better, the problems 
that hinder the proper functioning of differential equation 
modeling in the two disciplines, mathematics and 
physics, in secondary school as pointed out in [9], we 
aimed in this study to explore the attitudes of the teachers 
of the two disciplines towards the sources of difficulties 
related to the different modeling steps. 

The questionnaire conducted among a random group 
of classroom teachers of both disciplines led to the 
following conclusions. Generally, seniority in teaching 
had no effect on the attitudes of teachers of both subjects 
to the modeling question. The teachers surveyed showed 
significantly correlated responses for all five modeling 
steps. For the fifth step, which deals with the validation 
of the mathematical model by subjecting it to evaluation 
under real-world constraints, it was found to be the most 
correlated with the attitudes of the other four steps.  It 
follows that the attitudes of the mathematics and physics 
teachers can be summarized by the responses obtained on 
the attitudes on the last validation step. 

In order to go further in this direction, based on the 
grid developed by Klock and Siller [25] on the difficulties 
related to the sub-competences of modeling, we intend in 
the future to conduct research on the following two 
questions:  
1. What attitudes do mathematics teachers have towards 
these difficulties in DE modeling? 
2. What difficulties can be observed in secondary school 
or university students when analyzing their productions 
via this grid implemented in DE modeling situations? 
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